SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Jaume D.) srt2:(2015-2019)"

Search: WFRF:(Jaume D.) > (2015-2019)

  • Result 1-10 of 16
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Bentham, James, et al. (author)
  • A century of trends in adult human height
  • 2016
  • In: eLIFE. - 2050-084X. ; 5
  • Journal article (peer-reviewed)abstract
    • Being taller is associated with enhanced longevity, and higher education and earnings. We reanalysed 1472 population-based studies, with measurement of height on more than 18.6 million participants to estimate mean height for people born between 1896 and 1996 in 200 countries. The largest gain in adult height over the past century has occurred in South Korean women and Iranian men, who became 20.2 cm (95% credible interval 17.522.7) and 16.5 cm (13.319.7) taller, respectively. In contrast, there was little change in adult height in some sub-Saharan African countries and in South Asia over the century of analysis. The tallest people over these 100 years are men born in the Netherlands in the last quarter of 20th century, whose average heights surpassed 182.5 cm, and the shortest were women born in Guatemala in 1896 (140.3 cm; 135.8144.8). The height differential between the tallest and shortest populations was 19-20 cm a century ago, and has remained the same for women and increased for men a century later despite substantial changes in the ranking of countries.
  •  
2.
  • Bentham, James, et al. (author)
  • A century of trends in adult human height
  • 2016
  • In: eLIFE. - : eLife Sciences Publications Ltd. - 2050-084X. ; 5
  • Journal article (peer-reviewed)abstract
    • Being taller is associated with enhanced longevity, and higher education and earnings. We reanalysed 1472 population-based studies, with measurement of height on more than 18.6 million participants to estimate mean height for people born between 1896 and 1996 in 200 countries. The largest gain in adult height over the past century has occurred in South Korean women and Iranian men, who became 20.2 cm (95% credible interval 17.5–22.7) and 16.5 cm (13.3– 19.7) taller, respectively. In contrast, there was little change in adult height in some sub-Saharan African countries and in South Asia over the century of analysis. The tallest people over these 100 years are men born in the Netherlands in the last quarter of 20th century, whose average heights surpassed 182.5 cm, and the shortest were women born in Guatemala in 1896 (140.3 cm; 135.8– 144.8). The height differential between the tallest and shortest populations was 19-20 cm a century ago, and has remained the same for women and increased for men a century later despite substantial changes in the ranking of countries.
  •  
3.
  •  
4.
  • Evangelou, Evangelos, et al. (author)
  • Genetic analysis of over 1 million people identifies 535 new loci associated with blood pressure traits.
  • 2018
  • In: Nature Genetics. - : Springer Science and Business Media LLC. - 1061-4036 .- 1546-1718. ; 50:10, s. 1412-1425
  • Journal article (peer-reviewed)abstract
    • High blood pressure is a highly heritable and modifiable risk factor for cardiovascular disease. We report the largest genetic association study of blood pressure traits (systolic, diastolic and pulse pressure) to date in over 1 million people of European ancestry. We identify 535 novel blood pressure loci that not only offer new biological insights into blood pressure regulation but also highlight shared genetic architecture between blood pressure and lifestyle exposures. Our findings identify new biological pathways for blood pressure regulation with potential for improved cardiovascular disease prevention in the future.
  •  
5.
  • Wain, Louise V., et al. (author)
  • Novel Blood Pressure Locus and Gene Discovery Using Genome-Wide Association Study and Expression Data Sets From Blood and the Kidney
  • 2017
  • In: Hypertension. - 0194-911X .- 1524-4563. ; 70:3, s. e4-e19
  • Journal article (peer-reviewed)abstract
    • Elevated blood pressure is a major risk factor for cardiovascular disease and has a substantial genetic contribution. Genetic variation influencing blood pressure has the potential to identify new pharmacological targets for the treatment of hypertension. To discover additional novel blood pressure loci, we used 1000 Genomes Project-based imputation in 150 134 European ancestry individuals and sought significant evidence for independent replication in a further 228 245 individuals. We report 6 new signals of association in or near HSPB7, TNXB, LRP12, LOC283335, SEPT9, and AKT2, and provide new replication evidence for a further 2 signals in EBF2 and NFKBIA. Combining large whole-blood gene expression resources totaling 12 607 individuals, we investigated all novel and previously reported signals and identified 48 genes with evidence for involvement in blood pressure regulation that are significant in multiple resources. Three novel kidney-specific signals were also detected. These robustly implicated genes may provide new leads for therapeutic innovation.
  •  
6.
  • Phuah, Chia-Ling, et al. (author)
  • Genetic variants influencing elevated myeloperoxidase levels increase risk of stroke
  • 2017
  • In: Brain. - : Oxford University Press (OUP). - 0006-8950 .- 1460-2156. ; 140:10, s. 2663-2672
  • Journal article (peer-reviewed)abstract
    • Primary intracerebral haemorrhage and lacunar ischaemic stroke are acute manifestations of progressive cerebral microvascular disease. Current paradigms suggest atherosclerosis is a chronic, dynamic, inflammatory condition precipitated in response to endothelial injury from various environmental challenges. Myeloperoxidase plays a central role in initiation and progression of vascular inflammation, but prior studies linking myeloperoxidase with stroke risk have been inconclusive. We hypothesized that genetic determinants of myeloperoxidase levels influence the development of vascular instability, leading to increased primary intracerebral haemorrhage and lacunar stroke risk. We used a discovery cohort of 1409 primary intracerebral haemorrhage cases and 1624 controls from three studies, an extension cohort of 12 577 ischaemic stroke cases and 25 643 controls from NINDSSiGN, and a validation cohort of 10 307 ischaemic stroke cases and 29 326 controls from METASTROKE Consortium with genome-wide genotyping to test this hypothesis. A genetic risk score reflecting elevated myeloperoxidase levels was constructed from 15 common single nucleotide polymorphisms identified from prior genome-wide studies of circulating myeloperoxidase levels (P55 - 10 6). This genetic risk score was used as the independent variable in multivariable regression models for association with primary intracerebral haemorrhage and ischaemic stroke subtypes. We used fixed effects meta-analyses to pool estimates across studies. We also used Cox regression models in a prospective cohort of 174 primary intracerebral haemorrhage survivors for association with intracerebral haemorrhage recurrence. We present effects of myeloperoxidase elevating single nucleotide polymorphisms on stroke risk per risk allele, corresponding to a one allele increase in the myeloperoxidase increasing genetic risk score. Genetic determinants of elevated circulating myeloperoxidase levels were associated with both primary intracerebral haemorrhage risk (odds ratio, 1.07, P = 0.04) and recurrent intracerebral haemorrhage risk (hazards ratio, 1.45, P = 0.006). In analysis of ischaemic stroke subtypes, the myeloperoxidase increasing genetic risk score was strongly associated with lacunar subtype only (odds ratio, 1.05, P = 0.0012). These results, demonstrating that common genetic variants that increase myeloperoxidase levels increase risk of primary intracerebral haemorrhage and lacunar stroke, directly implicate the myeloperoxidase pathway in the pathogenesis of cerebral small vessel disease. Because genetic variants are not influenced by environmental exposures, these results provide new support for a causal rather than bystander role for myeloperoxidase in the progression of cerebrovascular disease. Furthermore, these results support a rationale for chronic inflammation as a potential modifiable stroke risk mechanism, and suggest that immune-targeted therapies could be useful for treatment and prevention of cerebrovascular disease.
  •  
7.
  • Chung, Jaeyoon, et al. (author)
  • Genome-wide association study of cerebral small vessel disease reveals established and novel loci
  • 2019
  • In: Brain : a journal of neurology. - : Oxford University Press (OUP). - 1460-2156. ; 142:10, s. 3176-3189
  • Journal article (peer-reviewed)abstract
    • Intracerebral haemorrhage and small vessel ischaemic stroke (SVS) are the most acute manifestations of cerebral small vessel disease, with no established preventive approaches beyond hypertension management. Combined genome-wide association study (GWAS) of these two correlated diseases may improve statistical power to detect novel genetic factors for cerebral small vessel disease, elucidating underlying disease mechanisms that may form the basis for future treatments. Because intracerebral haemorrhage location is an adequate surrogate for distinct histopathological variants of cerebral small vessel disease (lobar for cerebral amyloid angiopathy and non-lobar for arteriolosclerosis), we performed GWAS of intracerebral haemorrhage by location in 1813 subjects (755 lobar and 1005 non-lobar) and 1711 stroke-free control subjects. Intracerebral haemorrhage GWAS results by location were meta-analysed with GWAS results for SVS from MEGASTROKE, using 'Multi-Trait Analysis of GWAS' (MTAG) to integrate summary data across traits and generate combined effect estimates. After combining intracerebral haemorrhage and SVS datasets, our sample size included 241 024 participants (6255 intracerebral haemorrhage or SVS cases and 233 058 control subjects). Genome-wide significant associations were observed for non-lobar intracerebral haemorrhage enhanced by SVS with rs2758605 [MTAG P-value (P) = 2.6 × 10-8] at 1q22; rs72932727 (P = 1.7 × 10-8) at 2q33; and rs9515201 (P = 5.3 × 10-10) at 13q34. In the GTEx gene expression library, rs2758605 (1q22), rs72932727 (2q33) and rs9515201 (13q34) are significant cis-eQTLs for PMF1 (P = 1 × 10-4 in tibial nerve), NBEAL1, FAM117B and CARF (P < 2.1 × 10-7 in arteries) and COL4A2 and COL4A1 (P < 0.01 in brain putamen), respectively. Leveraging S-PrediXcan for gene-based association testing with the predicted expression models in tissues related with nerve, artery, and non-lobar brain, we found that experiment-wide significant (P < 8.5 × 10-7) associations at three genes at 2q33 including NBEAL1, FAM117B and WDR12 and genome-wide significant associations at two genes including ICA1L at 2q33 and ZCCHC14 at 16q24. Brain cell-type specific expression profiling libraries reveal that SEMA4A, SLC25A44 and PMF1 at 1q22 and COL4A1 and COL4A2 at 13q34 were mainly expressed in endothelial cells, while the genes at 2q33 (FAM117B, CARF and NBEAL1) were expressed in various cell types including astrocytes, oligodendrocytes and neurons. Our cross-phenotype genetic study of intracerebral haemorrhage and SVS demonstrates novel genome-wide associations for non-lobar intracerebral haemorrhage at 2q33 and 13q34. Our replication of the 1q22 locus previous seen in traditional GWAS of intracerebral haemorrhage, as well as the rediscovery of 13q34, which had previously been reported in candidate gene studies with other cerebral small vessel disease-related traits strengthens the credibility of applying this novel genome-wide approach across intracerebral haemorrhage and SVS.
  •  
8.
  • Giese, Anne Katrin, et al. (author)
  • Design and rationale for examining neuroimaging genetics in ischemic stroke : The MRI-GENIE study
  • 2017
  • In: Neurology: Genetics. - 2376-7839. ; 3:5
  • Journal article (peer-reviewed)abstract
    • Objective: To describe the design and rationale for the genetic analysis of acute and chronic cerebrovascular neuroimaging phenotypes detected on clinical MRI in patients with acute ischemic stroke (AIS) within the scope of the MRI-GENetics Interface Exploration (MRI-GENIE) study. Methods: MRI-GENIE capitalizes on the existing infrastructure of the Stroke Genetics Network (SiGN). In total, 12 international SiGN sites contributedMRIs of 3,301 patients with AIS. Detailed clinical phenotyping with the web-based Causative Classification of Stroke (CCS) system and genome-wide genotyping data were available for all participants. Neuroimaging analyses include themanual and automated assessments of established MRI markers. A high-throughputMRI analysis pipeline for the automated assessment of cerebrovascular lesions on clinical scans will be developed in a subset of scans for both acute and chronic lesions, validated against gold standard, and applied to all available scans. The extracted neuroimaging phenotypes will improve characterization of acute and chronic cerebrovascular lesions in ischemic stroke, including CCS subtypes, and their effect on functional outcomes after stroke. Moreover, genetic testing will uncover variants associated with acute and chronic MRI manifestations of cerebrovascular disease.Conclusions: The MRI-GENIE study aims to develop, validate, and distribute the MRI analysis platform for scans acquired as part of clinical care for patients with AIS, which will lead to (1) novel genetic discoveries in ischemic stroke, (2) strategies for personalized stroke risk assessment, and (3) personalized stroke outcome assessment.
  •  
9.
  • Wu, Ona, et al. (author)
  • Big Data Approaches to Phenotyping Acute Ischemic Stroke Using Automated Lesion Segmentation of Multi-Center Magnetic Resonance Imaging Data
  • 2019
  • In: Stroke. - 1524-4628. ; 50:7, s. 1734-1741
  • Journal article (peer-reviewed)abstract
    • Background and Purpose- We evaluated deep learning algorithms' segmentation of acute ischemic lesions on heterogeneous multi-center clinical diffusion-weighted magnetic resonance imaging (MRI) data sets and explored the potential role of this tool for phenotyping acute ischemic stroke. Methods- Ischemic stroke data sets from the MRI-GENIE (MRI-Genetics Interface Exploration) repository consisting of 12 international genetic research centers were retrospectively analyzed using an automated deep learning segmentation algorithm consisting of an ensemble of 3-dimensional convolutional neural networks. Three ensembles were trained using data from the following: (1) 267 patients from an independent single-center cohort, (2) 267 patients from MRI-GENIE, and (3) mixture of (1) and (2). The algorithms' performances were compared against manual outlines from a separate 383 patient subset from MRI-GENIE. Univariable and multivariable logistic regression with respect to demographics, stroke subtypes, and vascular risk factors were performed to identify phenotypes associated with large acute diffusion-weighted MRI volumes and greater stroke severity in 2770 MRI-GENIE patients. Stroke topography was investigated. Results- The ensemble consisting of a mixture of MRI-GENIE and single-center convolutional neural networks performed best. Subset analysis comparing automated and manual lesion volumes in 383 patients found excellent correlation (ρ=0.92; P<0.0001). Median (interquartile range) diffusion-weighted MRI lesion volumes from 2770 patients were 3.7 cm3 (0.9-16.6 cm3). Patients with small artery occlusion stroke subtype had smaller lesion volumes ( P<0.0001) and different topography compared with other stroke subtypes. Conclusions- Automated accurate clinical diffusion-weighted MRI lesion segmentation using deep learning algorithms trained with multi-center and diverse data is feasible. Both lesion volume and topography can provide insight into stroke subtypes with sufficient sample size from big heterogeneous multi-center clinical imaging phenotype data sets.
  •  
10.
  • Anderson, Christopher D., et al. (author)
  • Genetic variants in CETP increase risk of intracerebral hemorrhage
  • 2016
  • In: Annals of Neurology. - : Wiley. - 1531-8249 .- 0364-5134. ; 80:5, s. 730-740
  • Journal article (peer-reviewed)abstract
    • OBJECTIVE: In observational epidemiologic studies, higher plasma high-density lipoprotein cholesterol (HDL-C) has been associated with increased risk of intracerebral hemorrhage (ICH). DNA sequence variants that decrease cholesteryl ester transfer protein (CETP) gene activity increase plasma HDL-C; as such, medicines that inhibit CETP and raise HDL-C are in clinical development. Here, we test the hypothesis that CETP DNA sequence variants associated with higher HDL-C also increase risk for ICH.METHODS: We performed 2 candidate-gene analyses of CETP. First, we tested individual CETP variants in a discovery cohort of 1,149 ICH cases and 1,238 controls from 3 studies, followed by replication in 1,625 cases and 1,845 controls from 5 studies. Second, we constructed a genetic risk score comprised of 7 independent variants at the CETP locus and tested this score for association with HDL-C as well as ICH risk.RESULTS: Twelve variants within CETP demonstrated nominal association with ICH, with the strongest association at the rs173539 locus (odds ratio [OR] = 1.25, standard error [SE] = 0.06, p = 6.0 × 10(-4) ) with no heterogeneity across studies (I(2) = 0%). This association was replicated in patients of European ancestry (p = 0.03). A genetic score of CETP variants found to increase HDL-C by ∼2.85mg/dl in the Global Lipids Genetics Consortium was strongly associated with ICH risk (OR = 1.86, SE = 0.13, p = 1.39 × 10(-6) ).INTERPRETATION: Genetic variants in CETP associated with increased HDL-C raise the risk of ICH. Given ongoing therapeutic development in CETP inhibition and other HDL-raising strategies, further exploration of potential adverse cerebrovascular outcomes may be warranted. Ann Neurol 2016;80:730-740.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-10 of 16
Type of publication
journal article (16)
Type of content
peer-reviewed (16)
Author/Editor
Meschia, James F (5)
Salomaa, Veikko (5)
Peeters, Petra H (3)
Overvad, Kim (3)
Kaaks, Rudolf (3)
Boeing, Heiner (3)
show more...
Trichopoulou, Antoni ... (3)
Norat, Teresa (3)
Riboli, Elio (3)
Joffres, Michel (3)
Kittner, Steven J. (3)
McKee, Martin (3)
Lundqvist, Annamari (3)
Giwercman, Aleksande ... (3)
Wade, Alisha N. (3)
Cooper, Cyrus (3)
Hardy, Rebecca (3)
Sunyer, Jordi (3)
Brenner, Hermann (3)
Claessens, Frank (3)
Craig, Cora L. (3)
Sjostrom, Michael (3)
Adams, Robert (3)
Thijs, Lutgarde (3)
Staessen, Jan A (3)
Schutte, Aletta E. (3)
Farzadfar, Farshad (3)
Geleijnse, Johanna M ... (3)
Guessous, Idris (3)
Jonas, Jost B. (3)
Kasaeian, Amir (3)
Khader, Yousef Saleh (3)
Khang, Young-Ho (3)
Lotufo, Paulo A. (3)
Malekzadeh, Reza (3)
Mensink, Gert B. M. (3)
Mohan, Viswanathan (3)
Nagel, Gabriele (3)
Qorbani, Mostafa (3)
Rivera, Juan A. (3)
Sepanlou, Sadaf G. (3)
Szponar, Lucjan (3)
Alkerwi, Ala'a (3)
Bjertness, Espen (3)
Kengne, Andre P. (3)
McGarvey, Stephen T. (3)
Shiri, Rahman (3)
Topor-Madry, Roman (3)
Branca, Francesco (3)
Damasceno, Albertino (3)
show less...
University
Uppsala University (8)
Lund University (8)
University of Gothenburg (2)
Umeå University (2)
Luleå University of Technology (2)
Stockholm University (2)
show more...
Karolinska Institutet (2)
Royal Institute of Technology (1)
Högskolan Dalarna (1)
show less...
Language
English (16)
Research subject (UKÄ/SCB)
Medical and Health Sciences (14)
Natural sciences (2)
Engineering and Technology (1)

Year

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view