SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Jeremie N) srt2:(2020-2024)"

Search: WFRF:(Jeremie N) > (2020-2024)

  • Result 1-9 of 9
Sort/group result
   
EnumerationReferenceCoverFind
1.
  •  
2.
  • Li, Q., et al. (author)
  • Obesity and hyperinsulinemia drive adipocytes to activate a cell cycle program and senesce
  • 2021
  • In: Nature Medicine. - : Springer Science and Business Media LLC. - 1078-8956 .- 1546-170X. ; 27, s. 1941-1953
  • Journal article (peer-reviewed)abstract
    • Obesity is considered an important factor for many chronic diseases, including diabetes, cardiovascular disease and cancer. The expansion of adipose tissue in obesity is due to an increase in both adipocyte progenitor differentiation and mature adipocyte cell size. Adipocytes, however, are thought to be unable to divide or enter the cell cycle. We demonstrate that mature human adipocytes unexpectedly display a gene and protein signature indicative of an active cell cycle program. Adipocyte cell cycle progression associates with obesity and hyperinsulinemia, with a concomitant increase in cell size, nuclear size and nuclear DNA content. Chronic hyperinsulinemia in vitro or in humans, however, is associated with subsequent cell cycle exit, leading to a premature senescent transcriptomic and secretory profile in adipocytes. Premature senescence is rapidly becoming recognized as an important mediator of stress-induced tissue dysfunction. By demonstrating that adipocytes can activate a cell cycle program, we define a mechanism whereby mature human adipocytes senesce. We further show that by targeting the adipocyte cell cycle program using metformin, it is possible to influence adipocyte senescence and obesity-associated adipose tissue inflammation. Studies in mature human adipocytes demonstrate that obesity and hyperinsulinemia can induce reentry into the cell cycle and induce senescence.
  •  
3.
  • Manry, Jérémy, et al. (author)
  • The risk of COVID-19 death is much greater and age dependent with type I IFN autoantibodies.
  • 2022
  • In: Proceedings of the National Academy of Sciences of the United States of America. - : Proceedings of the National Academy of Sciences. - 1091-6490. ; 119:21
  • Journal article (peer-reviewed)abstract
    • Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection fatality rate (IFR) doubles with every 5 y of age from childhood onward. Circulating autoantibodies neutralizing IFN-α, IFN-ω, and/or IFN-β are found in ∼20% of deceased patients across age groups, and in ∼1% of individuals aged <70 y and in >4% of those >70 y old in the general population. With a sample of 1,261 unvaccinated deceased patients and 34,159 individuals of the general population sampled before the pandemic, we estimated both IFR and relative risk of death (RRD) across age groups for individuals carrying autoantibodies neutralizing type I IFNs, relative to noncarriers. The RRD associated with any combination of autoantibodies was higher in subjects under 70 y old. For autoantibodies neutralizing IFN-α2 or IFN-ω, the RRDs were 17.0 (95% CI: 11.7 to 24.7) and 5.8 (4.5 to 7.4) for individuals <70 y and ≥70 y old, respectively, whereas, for autoantibodies neutralizing both molecules, the RRDs were 188.3 (44.8 to 774.4) and 7.2 (5.0 to 10.3), respectively. In contrast, IFRs increased with age, ranging from 0.17% (0.12 to 0.31) for individuals <40 y old to 26.7% (20.3 to 35.2) for those ≥80 y old for autoantibodies neutralizing IFN-α2 or IFN-ω, and from 0.84% (0.31 to 8.28) to 40.5% (27.82 to 61.20) for autoantibodies neutralizing both. Autoantibodies against type I IFNs increase IFRs, and are associated with high RRDs, especially when neutralizing both IFN-α2 and IFN-ω. Remarkably, IFRs increase with age, whereas RRDs decrease with age. Autoimmunity to type I IFNs is a strong and common predictor of COVID-19 death.
  •  
4.
  • Bastard, Paul, et al. (author)
  • Preexisting autoantibodies to type I IFNs underlie critical COVID-19 pneumonia in patients with APS-1.
  • 2021
  • In: The Journal of experimental medicine. - 1540-9538. ; 218:7
  • Journal article (peer-reviewed)abstract
    • Patients with biallelic loss-of-function variants of AIRE suffer from autoimmune polyendocrine syndrome type-1 (APS-1) and produce a broad range of autoantibodies (auto-Abs), including circulating auto-Abs neutralizing most type I interferons (IFNs). These auto-Abs were recently reported to account for at least 10% of cases of life-threatening COVID-19 pneumonia in the general population. We report 22 APS-1 patients from 21 kindreds in seven countries, aged between 8 and 48 yr and infected with SARS-CoV-2 since February 2020. The 21 patients tested had auto-Abs neutralizing IFN-α subtypes and/or IFN-ω; one had anti-IFN-β and another anti-IFN-ε, but none had anti-IFN-κ. Strikingly, 19 patients (86%) were hospitalized for COVID-19 pneumonia, including 15 (68%) admitted to an intensive care unit, 11 (50%) who required mechanical ventilation, and four (18%) who died. Ambulatory disease in three patients (14%) was possibly accounted for by prior or early specific interventions. Preexisting auto-Abs neutralizing type I IFNs in APS-1 patients confer a very high risk of life-threatening COVID-19 pneumonia at any age.
  •  
5.
  • Chu, Lianhe, et al. (author)
  • In vivo drug discovery for increasing incretin-expressing cells identifies DYRK inhibitors that reinforce the enteroendocrine system
  • 2022
  • In: Cell Chemical Biology. - : Elsevier BV. - 2451-9456 .- 2451-9448. ; 29:9, s. 5-1380
  • Journal article (peer-reviewed)abstract
    • Analogs of the incretin hormones Gip and Glp-1 are used to treat type 2 diabetes and obesity. Findings in experimental models suggest that manipulating several hormones simultaneously may be more effective. To identify small molecules that increase the number of incretin-expressing cells, we established a high-throughput in vivo chemical screen by using the gip promoter to drive the expression of luciferase in zebrafish. All hits increased the numbers of neurogenin 3-expressing enteroendocrine progenitors, Gip-expressing K-cells, and Glp-1-expressing L-cells. One of the hits, a dual-specificity tyrosine phosphorylation-regulated kinase (DYRK) inhibitor, additionally decreased glucose levels in both larval and juvenile fish. Knock-down experiments indicated that nfatc4, a downstream mediator of DYRKs, regulates incretin+ cell number in zebrafish, and that Dyrk1b regulates Glp-1 expression in an enteroendocrine cell line. DYRK inhibition also increased the number of incretin-expressing cells in diabetic mice, suggesting a conserved reinforcement of the enteroendocrine system, with possible implications for diabetes.
  •  
6.
  • Kroon, Tobias, et al. (author)
  • Chronotherapy with a glucokinase activator profoundly improves metabolism in obese Zucker rats
  • 2022
  • In: Science translational medicine. - : American Association for the Advancement of Science (AAAS). - 1946-6234 .- 1946-6242. ; 14:668
  • Journal article (peer-reviewed)abstract
    • Circadian rhythms play a critical role in regulating metabolism, including daily cycles of feeding/fasting. Glucokinase (GCK) is central for whole-body glucose homeostasis and oscillates according to a circadian clock. GCK activators (GKAs) effectively reduce hyperglycemia, but their use is also associated with hypoglycemia, hyperlipidemia, and hepatic steatosis. Given the circadian rhythmicity and natural postprandial activation of GCK, we hypothesized that GKA treatment would benefit from being timed specifically during feeding periods. Acute treatment of obese Zucker rats with the GKA AZD1656 robustly increased flux into all major metabolic pathways of glucose disposal, enhancing glucose elimination. Four weeks of continuous AZD1656 treatment of obese Zucker rats improved glycemic control; however, hepatic steatosis and inflammation manifested. In contrast, timing AZD1656 to feeding periods robustly reduced hepatic steatosis and inflammation in addition to improving glycemia, whereas treatment timed to fasting periods caused overall detrimental metabolic effects. Mechanistically, timing AZD1656 to feeding periods diverted newly synthesized lipid toward direct VLDL secretion rather than intrahepatic storage. In line with increased hepatic insulin signaling, timing AZD1656 to feeding resulted in robust activation of AKT, mTOR, and SREBP-1C after glucose loading, pathways known to regulate VLDL secretion and hepatic de novo lipogenesis. In conclusion, intermittent AZD1656 treatment timed to feeding periods promotes glucose disposal when needed the most, restores metabolic flexibility and hepatic insulin sensitivity, and thereby avoids hepatic steatosis. Thus, chronotherapeutic approaches may benefit the development of GKAs and other drugs acting on metabolic targets.
  •  
7.
  • Park, Se Hyung, et al. (author)
  • A luminescence-based protocol for assessing fructose metabolism via quantification of ketohexokinase enzymatic activity in mouse or human hepatocytes
  • 2021
  • In: STAR Protocols. - : Elsevier BV. - 2666-1667. ; 2:3
  • Journal article (peer-reviewed)abstract
    • Ketohexokinase (KHK) catalyzes the first step of fructose metabolism. Inhibitors of KHK enzymatic activity are being evaluated in clinical trials for the treatment of non-alcoholic fatty liver disease (NAFLD) and diabetes. Here, we present a luminescence-based protocol to quantify KHK activity. The accuracy of this technique has been validated using knockdown and overexpression of KHK in vivo and in vitro. The specificity of the assay has been verified using 3-O-methyl-D-fructose, a non-metabolizable analog of fructose, heat inactivation of hexokinases, and depletion of potassium. For complete details on the use of this protocol, please refer to Damen et al. (2021).
  •  
8.
  • Peel, Jessica N., et al. (author)
  • Neutralizing IFN-γ autoantibodies are rare and pathogenic in HLA-DRB1*15:02 or 16:02 individuals
  • 2024
  • In: Journal of Clinical Investigation. - : American Society For Clinical Investigation. - 0021-9738 .- 1558-8238. ; 134:8
  • Journal article (peer-reviewed)abstract
    • BACKGROUND. Weakly virulent environmental mycobacteria (EM) can cause severe disease in HLA-DRB1*15:02 or 16:02 adults harboring neutralizing anti-IFN-γ autoantibodies (nAIGAs). The overall prevalence of nAIGAs in the general population is unknown, as are the penetrance of nAIGAs in HLA-DRB1*15:02 or 16:02 individuals and the proportion of patients with unexplained, adult-onset EM infections carrying nAIGAs.METHODS. This study analyzed the detection and neutralization of anti-IFN-γ autoantibodies (auto-Abs) from 8,430 healthy individuals of the general population, 257 HLA-DRB1*15:02 or 16:02 carriers, 1,063 patients with autoimmune disease, and 497 patients with unexplained severe disease due to EM.RESULTS. We found that anti-IFN-γ auto-Abs detected in 4,148 of 8,430 healthy individuals (49.2%) from the general population of an unknown HLA-DRB1 genotype were not neutralizing. Moreover, we did not find nAIGAs in 257 individuals carrying HLA-DRB1* 15:02 or 16:02. Additionally, nAIGAs were absent in 1,063 patients with an autoimmune disease. Finally, 7 of 497 patients (1.4%) with unexplained severe disease due to EM harbored nAIGAs.CONCLUSION. These findings suggest that nAIGAs are isolated and that their penetrance in HLA-DRB1*15:02 or 16:02 individuals is low, implying that they may be triggered by rare germline or somatic variants. In contrast, the risk of mycobacterial disease in patients with nAIGAs is high, confirming that these nAIGAs are the cause of EM disease.
  •  
9.
  • Wallenius, K., et al. (author)
  • The SGLT2 inhibitor dapagliflozin promotes systemic FFA mobilization, enhances hepatic β-oxidation, and induces ketosis
  • 2022
  • In: Journal of Lipid Research. - : Elsevier BV. - 0022-2275. ; 63:3
  • Journal article (peer-reviewed)abstract
    • Sodium-glucose cotransporter 2 (SGLT2) inhibitors have been shown to increase ketone bodies in patients with type 2 diabetes; however, the underlying mechanisms have not been fully elucidated. Here we examined the effect of the SGLT2 inhibitor dapagliflozin (1 mg/kg/day, formulated in a water, PEG400, ethanol, propylene glycol solution, 4 weeks) on lipid metabolism in obese Zucker rats. Fasting FFA metabolism was assessed in the anesthetized state using a [9,10-3H(N)]-palmitic acid tracer by estimating rates of plasmaFFAappearance (Ra),whole-bodyFFAoxidation (Rox), and nonoxidative disposal (Rst). In the liver, clearance (Kβ-ox) and flux (Rβ-ox) of FFA into β-oxidation were estimated using [9,10-3H]-(R)-bromopalmitate/[U-14C] palmitate tracers. As expected, dapagliflozin induced glycosuria and a robust antidiabetic effect; treatment reduced fasting plasma glucose and insulin, lowered glycated hemoglobin, and increased pancreatic insulin content compared with vehicle controls. Dapagliflozin also increased plasma FFA, Ra, Rox, and Rst with enhanced channeling toward oxidation versus storage. In the liver, there was also enhanced channeling of FFA to β-oxidation, with increased Kβ-ox, Rβ-ox and tissue acetyl-CoA, compared with controls. Finally, dapagliflozin increased hepatic HMG-CoA and plasma β-hydroxybutyrate, consistent with a specific enhancement of ketogenesis. Since ketogenesis has not been directly measured, we cannot exclude an additional contribution of impaired ketone body clearance to the ketosis. In conclusion, this study provides evidence that the dapagliflozin-induced increase in plasma ketone bodies is driven by the combined action of FFA mobilization from adipose tissue and diversion of hepatic FFA toward β-oxidation. © 2022 THE AUTHORS.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-9 of 9

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view