SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Jonsson Kent Olov) srt2:(2003)"

Search: WFRF:(Jonsson Kent Olov) > (2003)

  • Result 1-2 of 2
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Jonsson, Kent-Olov, et al. (author)
  • AM404 and VDM 11 non-specifically inhibit C6 glioma cell proliferation at concentrations used to block the cellular accumulation of the endocannabinoid anandamide.
  • 2003
  • In: Archives of Toxicology. - : Springer Science and Business Media LLC. - 0340-5761 .- 1432-0738. ; 77:4, s. 201-207
  • Journal article (peer-reviewed)abstract
    • AM404 [ N-(4-hydroxyphenyl)arachidonylamide] and VDM 11 [(5 Z,8 Z,11 Z,14 Z)- N-(4-hydroxy-2-methylphenyl)-5,8,11,14-eicosatetraenamide] are commonly used to prevent the cellular accumulation of the endocannabinoid anandamide, and thereby to potentiate its actions. However, it has been reported that AM404 can produce an influx of calcium into cells, which might be expected to have deleterious effects on cell proliferation. In the present study, AM404 and VDM 11 were found to reduce C6 glioma cell proliferation with IC(50) values of 4.9 and 2.7 microM, respectively. The inhibition of cell proliferation following a 96-h exposure was not accompanied by dramatic caspase activation, and was not prevented by either a combination of cannabinoid and vanilloid receptor antagonists, or by the antioxidant alpha-tocopherol, suggestive of a non-specific mode of action. Similar results were seen with palmitoylisopropylamide, although this compound only produced significant inhibition of cell proliferation at 30 microM concentrations. AM404 (1 microM), VDM 11 (1 microM) and palmitoylisopropylamide (3-30 microM), i.e. concentrations producing relatively modest effects on cell proliferation per se, reduced the vanilloid receptor-mediated antiproliferative effects of anandamide, as would be expected for compounds preventing the cellular accumulation of anandamide (and thereby access to its binding site on the vanilloid receptor). It is concluded that concentrations of AM404 and VDM 11 that are generally used to reduce the cellular accumulation of anandamide have deleterious effects upon cell proliferation, and that lower concentrations of these compounds may be more appropriate to use in vitro.
  •  
2.
  • Vandevoorde, Séverine, et al. (author)
  • Modifications of the ethanolamine head in N-palmitoylethanolamine: synthesis and evaluation of new agents interfering with the metabolism of anandamide.
  • 2003
  • In: Journal of Medicinal Chemistry. - : American Chemical Society (ACS). - 0022-2623 .- 1520-4804. ; 46:8, s. 1440-1448
  • Journal article (peer-reviewed)abstract
    • The endogenous fatty acid amide anandamide (AEA) has, as a result of its actions on cannabinoid and vanilloid receptors, a number of important pharmacological properties including effects on nociception, memory processes, spasticity, and cell proliferation. Inhibition of the metabolism of AEA, catalyzed by fatty acid amide hydrolase (FAAH), potentiates the actions of AEA in vivo and therefore may be a useful target for drug development. In the present study, we have investigated whether substitution of the headgroup of the endogenous alternative FAAH substrate palmitoylethanolamide (PEA) can result in the identification of novel compounds preventing AEA metabolism. Thirty-seven derivatives of PEA were synthesized, with the C16 long chain of palmitic acid kept intact, and comprising 20 alkylated, 12 aromatic, and 4 halogenated amides. The ability of the PEA derivatives to inhibit FAAH-catalyzed hydrolysis of [(3)H]AEA was investigated using rat brain homogenates as a source of FAAH. Inhibition curves were analyzed to determine the potency of the inhibitable fraction (pI(50) values) and the maximal attained inhibition for the compound, given that solubility in an aqueous environment is a major issue for these compounds. In the alkylamide family, palmitoylethylamide and palmitoylallylamide were inhibitors of AEA metabolism with pI(50) values of 5.45 and 5.47, respectively. Halogenated derivatives (Cl and Br) exhibit pI(50) values of approximately 5.5 but rather low percentages of maximal inhibition. The -OH group of the ethyl head chain of N-palmitoylethanolamine was not necessary for interaction with FAAH. Amides containing aromatic moieties were less potent inhibitors of AEA metabolism. Compounds containing amide and ester bonds, 13 and 37, showed pI(50) values of 4.99 and 5.08, respectively. None of the compounds showed obvious affinity for CB(1) or CB(2) receptors expressed on Chinese hamster ovary (CHO) cells. It is concluded that although none of the compounds were dramatically more potent than PEA itself at reducing the metabolism of AEA, the lack of effect of the compounds at CB(1) and CB(2) receptors makes them useful templates for development of possible therapeutic FAAH inhibitors.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-2 of 2
Type of publication
journal article (2)
Type of content
peer-reviewed (2)
Author/Editor
Fowler, Christopher (2)
Vandevoorde, Severin ... (2)
Jonsson, Kent-Olov (2)
Lambert, Didier (2)
Andersson, Anna (1)
Jacobsson, Stig (1)
University
Umeå University (2)
Language
English (2)
Year

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view