SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Kastemar Marianne) srt2:(2005-2009)"

Search: WFRF:(Kastemar Marianne) > (2005-2009)

  • Result 1-7 of 7
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Hägerstrand, Daniel, et al. (author)
  • Characterization of an imatinib-sensitive subset of high-grade human glioma cultures
  • 2006
  • In: Oncogene. - : Springer Science and Business Media LLC. - 0950-9232 .- 1476-5594. ; 25:35, s. 4913-4922
  • Journal article (peer-reviewed)abstract
    • High-grade gliomas, including glioblastomas, are malignant brain tumors for which improved treatment is urgently needed. Genetic studies have demonstrated the existence of biologically distinct subsets. Preliminary studies have indicated that platelet-derived growth factor (PDGF) receptor signaling contributes to the growth of some of these tumors. In this study, human high-grade glioma primary cultures were analysed for sensitivity to treatment with the PDGF receptor inhibitor imatinib/Glivec/Gleevec/STI571. Six out of 15 cultures displayed more than 40% growth inhibition after imatinib treatment, whereas seven cultures showed less than 20% growth inhibition. In the sensitive cultures, apoptosis contributed to growth inhibition. Platelet-derived growth factor receptor status correlated with imatinib sensitivity. Supervised analyses of gene expression profiles and real-time PCR analyses identified expression of the chemokine CXCL12/SDF-1 (stromal cell-derived factor 1) as a predictor of imatinib sensitivity. Exogenous addition of CXCL12 to imatinib-insensitive cultures conferred some imatinib sensitivity. Finally, coregulation of CXCL12 and PDGF alpha-receptor was observed in glioblastoma biopsies. We have thus defined the characteristics of a novel imatinib-sensitive subset of glioma cultures, and provided evidence for a functional relationship between imatinib sensitivity and chemokine signaling. These findings will assist in the design and evaluation of clinical trials exploring therapeutic effects of imatinib on malignant brain tumors.
  •  
2.
  • Kärrlander, Maria, et al. (author)
  • Histidine-rich glycoprotein can prevent development of mouse experimental glioblastoma
  • 2009
  • In: PLoS ONE. - : Public Library of Science (PLoS). - 1932-6203. ; 4:12, s. e8536-
  • Journal article (peer-reviewed)abstract
    • Extensive angiogenesis, formation of new capillaries from pre-existing blood vessels, is an important feature of malignant glioma. Several antiangiogenic drugs targeting vascular endothelial growth factor (VEGF) or its receptors are currently in clinical trials as therapy for high-grade glioma and bevacizumab was recently approved by the FDA for treatment of recurrent glioblastoma. However, the modest efficacy of these drugs and emerging problems with anti-VEGF treatment resistance welcome the development of alternative antiangiogenic therapies. One potential candidate is histidine-rich glycoprotein (HRG), a plasma protein with antiangiogenic properties that can inhibit endothelial cell adhesion and migration. We have used the RCAS/TV-A mouse model for gliomas to investigate the effect of HRG on brain tumor development. Tumors were induced with platelet-derived growth factor-B (PDGF-B), in the presence or absence of HRG. We found that HRG had little effect on tumor incidence but could significantly inhibit the development of malignant glioma and completely prevent the occurrence of grade IV tumors (glioblastoma).  
  •  
3.
  • Lindberg, Nanna, 1982-, et al. (author)
  • Oligodendrocyte progenitor cells can act as cell of origin for experimental glioma
  • 2009
  • In: Oncogene. - : Springer Science and Business Media LLC. - 0950-9232 .- 1476-5594. ; 28:23, s. 2266-2275
  • Journal article (peer-reviewed)abstract
    • Gliomas are primary brain tumors mainly affecting adults. The cellular origin is unknown. The recent identification of tumor-initiating cells in glioma, which share many similarities with normal neural stem cells, has suggested the cell of origin to be a transformed neural stem cell. In previous studies, using the RCAS/tv-a mouse model, platelet-derived growth factor B (PDGF-B)-induced gliomas have been generated from nestin or glial fibrillary acidic protein-expressing cells, markers of neural stem cells. To investigate if committed glial progenitor cells could be the cell of origin for glioma, we generated the Ctv-a mouse where tumor induction would be restricted to myelinating oligodendrocyte progenitor cells (OPCs) expressing 2',3'-cyclic nucleotide 3'-phosphodiesterase. We showed that PDGF-B transfer to OPCs could induce gliomas with an incidence of 33%. The majority of tumors resembled human WHO grade II oligodendroglioma based on close similarities in histopathology and expression of cellular markers. Thus, with the Ctv-a mouse we have showed that the cell of origin for glioma may be a committed glial progenitor cell.
  •  
4.
  • Swartling, Fredrik J., et al. (author)
  • Cyclic GMP-dependent protein kinase II inhibits cell proliferation, Sox9 expression and Akt phosphorylation in human glioma cell lines
  • 2009
  • In: Oncogene. - : Springer Science and Business Media LLC. - 0950-9232 .- 1476-5594. ; 28:35, s. 3121-3131
  • Journal article (peer-reviewed)abstract
    • Earlier we used a glioma model to identify loci in the mouse genome, which were repeatedly targeted by platelet-derived growth factor (PDGF)-containing Moloney murine leukemia viruses. The gene Prkg2, encoding cyclic guanosine monophosphate (cGMP)-dependent protein kinase II, cGKII, was tagged by retroviral insertions in two brain tumors. The insertions were both situated upstream of the kinase domain and suggested creating a truncated form of the cGKII protein. We transfected different human glioma cell lines with Prkg2 and found an overall reduction in colony formation and cell proliferation compared with controls transfected with truncated Prkg2 (lacking the kinase domain) or empty vector. All glioma cells transfected with the cGKII phosphorylate vasodilator-stimulated phosphoprotein, VASP, after cGMP analog treatment. Glioma cell lines positive for the Sox9 transcription factor showed reduced Sox9 expression when Prkg2 was stably transfected. When cGKII was activated by cGMP analog treatment, Sox9 was phosphorylated, Sox9 protein expression was suppressed and the glioma cell lines displayed loss of cell adhesion, inhibition of Akt phosphorylation and G1 arrest. Sox9 repression by siRNA was similarly shown to reduce glioma cell proliferation. Expression analysis of stem and glial lineage cell markers also suggests that cGKII induces differentiation of glioma cell lines. These findings describe an anti-proliferative role of cGKII in human glioma biology and would further explain the retroviral tagging of the cGKII gene during brain tumor formation in PDGF-induced tumors.
  •  
5.
  • Tchougounova, Elena, et al. (author)
  • Loss of Arf causes tumor progression of PDGFB-induced oligodendroglioma
  • 2007
  • In: Oncogene. - : Springer Science and Business Media LLC. - 0950-9232 .- 1476-5594. ; 26:43, s. 6289-6296
  • Journal article (peer-reviewed)abstract
    • In a subset of gliomas, the platelet-derived growth factor (PDGF) signaling pathway is perturbed. This is usually an early event occurring in low-grade tumors. In high-grade gliomas, the subsequent loss of the INK4a-ARF locus is one of the most common mutations. Here, we dissected the separate roles of Ink4a and Arf in PDGFB-induced oligodendroglioma development in mice. We found that there were differential functions of the two tumor suppressor genes. In tumors induced from astrocytes, both Ink4a-loss and Arf-loss caused a significantly increased incidence compared to wild-type mice. In tumors induced from glial progenitor cells there was a slight increase in tumor incidence in Ink4a-/- mice and Ink4a-Arf-/- mice compared to wild-type mice. In both progenitor cells and astrocytes, Arf-loss caused a pronounced increase in tumor malignancy compared to Ink4a-loss. Hence, Ink4a-loss contributed to tumor initiation from astrocytes and Arf-loss caused tumor progression from both glial progenitor cells and astrocytes. Results from in vitro studies on primary brain cell cultures suggested that the PDGFB-induced activation of the mitogen-activated protein kinase pathway via extracellular signal-regulated kinase was involved in the initiation of low-grade oligodendrogliomas and that the additional loss of Arf may contribute to tumor progression through increased levels of cyclin D1 and a phosphoinositide 3-kinase-dependent activation of p70 ribosomal S6 kinase causing a strong proliferative response of tumor cells.
  •  
6.
  • Tchougounova, Elena, et al. (author)
  • Sox5 can suppress platelet-derived growth factor B-induced glioma development in Ink4a-deficient mice through induction of acute cellular senescence
  • 2009
  • In: Oncogene. - : Springer Science and Business Media LLC. - 0950-9232 .- 1476-5594. ; 28:12, s. 1537-1548
  • Journal article (peer-reviewed)abstract
    • SOX5 is a member of the high-mobility group superfamily of architectural non-histone proteins involved in gene regulation and maintenance of chromatin structure in a wide variety of developmental processes. Sox5 was identified as a brain tumor locus in a retroviral insertional mutagenesis screen of platelet-derived growth factor B (PDGFB)-induced mouse gliomas. Here we have investigated the role of Sox5 in PDGFB-induced gliomagenesis in mice. We show that Sox5 can suppress PDGFB-induced glioma development predominantly upon Ink4a-loss. In human glioma cell lines and tissues, we found very low levels of SOX5 compared with normal brain. Overexpression of Sox5 in human glioma cells led to a reduction in clone formation and inhibition of proliferation. Combined expression of Sox5 and PDGFB in primary brain cell cultures caused decreased proliferation and an increased number of senescent cells in the Ink4a-/- cells only. Protein analyses showed a reduction in the amount and activation of Akt and increased levels of p27(Kip1) upon Sox5 expression that was dominant to PDGFB signaling and specific to Ink4a-/- cells. Upon inhibition of p27(Kip1), the effects of Sox5 on proliferation and senescence could be reversed. Our data suggest a novel pathway, where Sox5 may suppress the oncogenic effects of PDGFB signaling during glioma development by regulating p27(Kip1) in a p19(Arf)-dependent manner, leading to acute cellular senescence.
  •  
7.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-7 of 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view