SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Keller Walter) srt2:(2015-2019)"

Search: WFRF:(Keller Walter) > (2015-2019)

  • Result 1-10 of 13
Sort/group result
   
EnumerationReferenceCoverFind
1.
  •  
2.
  • Kohler, Andreas, Dr. rer. nat. 1988-, et al. (author)
  • The enzymatic core of the Parkinson’s disease-associated protein LRRK2 impairs mitochondrial biogenesis in aging yeast
  • 2018
  • In: Frontiers in Molecular Neuroscience. - : Frontiers Media S.A.. - 1662-5099. ; 11
  • Journal article (peer-reviewed)abstract
    • Mitochondrial dysfunction is a prominent trait of cellular decline during aging and intimately linked to neuronal degeneration during Parkinson’s disease (PD). Various proteins associated with PD have been shown to differentially impact mitochondrial dynamics, quality control and function, including the leucine-rich repeat kinase 2 (LRRK2). Here, we demonstrate that high levels of the enzymatic core of human LRRK2, harboring GTPase as well as kinase activity, decreases mitochondrial mass via an impairment of mitochondrial biogenesis in aging yeast. We link mitochondrial depletion to a global downregulation of mitochondria-related gene transcripts and show that this catalytic core of LRRK2 localizes to mitochondria and selectively compromises respiratory chain complex IV formation. With progressing cellular age, this culminates in dissipation of mitochondrial transmembrane potential, decreased respiratory capacity, ATP depletion and generation of reactive oxygen species. Ultimately, the collapse of the mitochondrial network results in cell death. A point mutation in LRRK2 that increases the intrinsic GTPase activity diminishes mitochondrial impairment and consequently provides cytoprotection. In sum, we report that a downregulation of mitochondrial biogenesis rather than excessive degradation of mitochondria underlies the reduction of mitochondrial abundance induced by the enzymatic core of LRRK2 in aging yeast cells. Thus, our data provide a novel perspective for deciphering the causative mechanisms of LRRK2-associated PD pathology.
  •  
3.
  • Kohler, Verena, 1992-, et al. (author)
  • TraN: A novel repressor of an Enterococcus conjugative type IV secretion system
  • 2018
  • In: Nucleic Acids Research. - : Oxford University Press. - 0305-1048 .- 1362-4962. ; 46:17, s. 9201-9219
  • Journal article (peer-reviewed)abstract
    • The dissemination of multi-resistant bacteria represents an enormous burden on modern healthcare. Plasmid-borne conjugative transfer is the most prevalent mechanism, requiring a type IV secretion system that enables bacteria to spread beneficial traits, such as resistance to last-line antibiotics, among different genera. Inc18 plasmids, like the Gram-positive broad host-range plasmid pIP501, are substantially involved in propagation of vancomycin resistance from Enterococci to methicillin-resistant strains of Staphylococcus aureus. Here, we identified the small cytosolic protein TraN as a repressor of the pIP501-encoded conjugative transfer system, since deletion of traN resulted in upregulation of transfer factors, leading to highly enhanced conjugative transfer. Furthermore, we report the complex structure of TraN with DNA and define the exact sequence of its binding motif. Targeting this protein–DNA interaction might represent a novel therapeutic approach against the spreading of antibiotic resistances.
  •  
4.
  • Sheng, Xiang, et al. (author)
  • Reaction Mechanism and Substrate Specificity of Iso-orotate Decarboxylase : A Combined Theoretical and Experimental Study
  • 2018
  • In: Frontiers in Chemistry. - : Frontiers Media SA. - 2296-2646. ; 6
  • Journal article (peer-reviewed)abstract
    • The C-C bond cleavage catalyzed by metal-dependent iso-orotate decarboxylase (IDCase) from the thymidine salvage pathway is of interest for the elucidation of a (hypothetical) DNA demethylation pathway. IDCase appears also as a promising candidate for the synthetic regioselective carboxylation of N-heteroaromatics. Herein, we report a joint experimental-theoretical study to gain insights into the metal identity, reaction mechanism, and substrate specificity of IDCase. In contrast to previous assumptions, the enzyme is demonstrated by ICPMS/MS measurements to contain a catalytically relevant Mn(2+)rather than Zn2+. Quantum chemical calculations revealed that decarboxylation of the natural substrate (5-carboxyuracil) proceeds via a (reverse) electrophilic aromatic substitution with formation of CO2. The occurrence of previously proposed tetrahedral carboxylate intermediates with concomitant formation of HCO3- could be ruled out on the basis of prohibitively high energy barriers. In contrast to related o-benzoic acid decarboxylases, such as y-resorcylate decarboxylase and 5-carboxyvanillate decarboxylase, which exhibit a relaxed substrate tolerance for phenolic acids, IDCase shows high substrate fidelity. Structural and energy comparisons suggest that this is caused by a unique hydrogen bonding of the heterocyclic natural substrate (5-carboxyuracil) to the surrounding residues. Analysis of calculated energies also shows that the reverse carboxylation of uracil is impeded by a strongly disfavored uphill reaction.
  •  
5.
  • Aufschnaiter, Andreas, et al. (author)
  • The Coordinated Action of Calcineurin and Cathepsin D Protects Against alpha-Synuclein Toxicity
  • 2017
  • In: Frontiers in Molecular Neuroscience. - : Frontiers Media SA. - 1662-5099. ; 10
  • Journal article (peer-reviewed)abstract
    • The degeneration of dopaminergic neurons during Parkinson's disease (PD) is intimately linked to malfunction of alpha-synuclein (alpha Syn), the main component of the proteinaceous intracellular inclusions characteristic for this pathology. The cytotoxicity of alpha Syn has been attributed to disturbances in several biological processes conserved from yeast to humans, including Ca2+ homeostasis, general lysosomal function and autophagy. However, the precise sequence of events that eventually results in cell death remains unclear. Here, we establish a connection between the major lysosomal protease cathepsin D (CatD) and the Ca2+/calmodulin-dependent phosphatase calcineurin. In a yeast model for PD, high levels of human alpha Syn triggered cytosolic acidification and reduced vacuolar hydrolytic capacity, finally leading to cell death. This could be counteracted by overexpression of yeast CatD (Pep4), which re-installed pH homeostasis and vacuolar proteolytic function, decreased alpha Syn oligomers and aggregates, and provided cytoprotection. Interestingly, these beneficial effects of Pep4 were independent of autophagy. Instead, they required functional calcineurin signaling, since deletion of calcineurin strongly reduced both the proteolytic activity of endogenous Pep4 and the cytoprotective capacity of overexpressed Pep4. Calcineurin contributed to proper endosomal targeting of Pep4 to the vacuole and the recycling of the Pep4 sorting receptor Pep1 from prevacuolar compartments back to the trans-Golgi network. Altogether, we demonstrate that stimulation of this novel calcineurin-Pep4 axis reduces alpha Syn cytotoxicity.
  •  
6.
  • Fercher, Christian, et al. (author)
  • VirB8-like protein TraH is crucial for DNA transfer in Enterococcus faecalis
  • 2016
  • In: Scientific Reports. - : Nature Publishing Group. - 2045-2322. ; 6:1
  • Journal article (peer-reviewed)abstract
    • Untreatable bacterial infections caused by a perpetual increase of antibiotic resistant strains represent a serious threat to human healthcare in the 21st century. Conjugative DNA transfer is the most important mechanism for antibiotic resistance and virulence gene dissemination among bacteria and is mediated by a protein complex, known as type IV secretion system (T4SS). The core of the T4SS is a multiprotein complex that spans the bacterial envelope as a channel for macromolecular secretion. We report the NMR structure and functional characterization of the transfer protein TraH encoded by the conjugative Gram-positive broad-host range plasmid pIP501. The structure exhibits a striking similarity to VirB8 proteins of Gram-negative secretion systems where they play an essential role in the scaffold of the secretion machinery. Considering TraM as the first VirB8-like protein discovered in pIP501, TraH represents the second protein affiliated with this family in the respective transfer operon. A markerless traH deletion in pIP501 resulted in a total loss of transfer in Enterococcus faecalis as compared with the pIP501 wild type (wt) plasmid, demonstrating that TraH is essential for pIP501 mediated conjugation. Moreover, oligomerization state and topology of TraH in the native membrane were determined providing insights in molecular organization of a Gram-positive T4SS.
  •  
7.
  • Jones, Lesley, et al. (author)
  • Convergent genetic and expression data implicate immunity in Alzheimer's disease
  • 2015
  • In: Alzheimer's & Dementia. - : Wiley. - 1552-5260 .- 1552-5279. ; 11:6, s. 658-671
  • Journal article (peer-reviewed)abstract
    • Background: Late-onset Alzheimer's disease (AD) is heritable with 20 genes showing genome-wide association in the International Genomics of Alzheimer's Project (IGAP). To identify the biology underlying the disease, we extended these genetic data in a pathway analysis. Methods: The ALIGATOR and GSEA algorithms were used in the IGAP data to identify associated functional pathways and correlated gene expression networks in human brain. Results: ALIGATOR identified an excess of curated biological pathways showing enrichment of association. Enriched areas of biology included the immune response (P = 3.27 X 10(-12) after multiple testing correction for pathways), regulation of endocytosis (P = 1.31 X 10(-11)), cholesterol transport (P = 2.96 X 10(-9)), and proteasome-ubiquitin activity (P = 1.34 X 10(-6)). Correlated gene expression analysis identified four significant network modules, all related to the immune response (corrected P = .002-.05). Conclusions: The immime response, regulation of endocytosis, cholesterol transport, and protein ubiquitination represent prime targets for AD therapeutics.
  •  
8.
  • Kohler, Andreas, Dr. rer. nat. 1988-, et al. (author)
  • Mitochondrial lipids in neurodegeneration
  • 2016
  • In: Cell and Tissue Research. - : Springer. - 0302-766X .- 1432-0878. ; 367:1, s. 125-140
  • Journal article (other academic/artistic)abstract
    • Mitochondrial dysfunction is a common feature of many neurodegenerative diseases, including proteinopathies such as Alzheimer’s or Parkinson’s disease, which are characterized by the deposition of aggregated proteins in the form of insoluble fibrils or plaques. The distinct molecular processes that eventually result in mitochondrial dysfunction during neurodegeneration are well studied but still not fully understood. However, defects in mitochondrial fission and fusion, mitophagy, oxidative phosphorylation and mitochondrial bioenergetics have been linked to cellular demise. These processes are influenced by the lipid environment within mitochondrial membranes as, besides membrane structure and curvature, recruitment and activity of different proteins also largely depend on the respective lipid composition. Hence, the interaction of neurotoxic proteins with certain lipids and the modification of lipid composition in different cell compartments, in particular mitochondria, decisively impact cell death associated with neurodegeneration. Here, we discuss the relevance of mitochondrial lipids in the pathological alterations that result in neuronal demise, focussing on proteinopathies.
  •  
9.
  • Kohler, Verena, 1992-, et al. (author)
  • Conjugative type IV secretion in Gram-positive pathogens : TraG, a lytic transglycosylase and endopeptidase, interacts with translocation channel protein TraM
  • 2017
  • In: Plasmid. - : Elsevier BV. - 0147-619X .- 1095-9890. ; 91, s. 9-18
  • Journal article (peer-reviewed)abstract
    • Conjugative transfer plays a major role in the transmission of antibiotic resistance in bacteria. pIP501 is a Grampositive conjugative model plasmid with the broadest transfer host-range known so far and is frequently found in Enterococcus faecalis and Enterococcus faecium clinical isolates. The pIP501 type IV secretion system is encoded by 15 transfer genes. In this work, we focus on the VirB1-like protein TraG, a modular peptidoglycan metabolizing enzyme, and the VirB8-homolog TraM, a potential member of the translocation channel. By providing full-length traG in trans, but not with a truncated variant, we achieved full recovery of wild type transfer efficiency in the traG-knockout mutant E. faecalis pIP501AtraG. With peptidoglycan digestion experiments and tandem mass spectrometry we could assign lytic transglycosylase and endopeptidase activity to TraG, with the CHAP domain alone displaying endopeptidase activity. We identified a novel interaction between TraG and TraM in a bacterial 2-hybrid assay. In addition we found that both proteins localize in focal spots at the E. faecalis cell membrane using immunostaining and fluorescence microscopy. Extracellular protease digestion to evaluate protein cell surface exposure revealed that correct membrane localization of TraM requires the transmembrane helix of TraG. Thus, we suggest an essential role for TraG in the assembly of the pIP501 type IV secretion system.
  •  
10.
  • Kohler, Verena, 1992-, et al. (author)
  • Enterococcus adhesin PrgB facilitates type IV secretion by condensation of extracellular DNA
  • 2018
  • In: Molecular Microbiology. - : John Wiley & Sons. - 0950-382X .- 1365-2958. ; 109:3, s. 263-267
  • Journal article (peer-reviewed)abstract
    • Conjugative type IV secretion systems (T4SSs) are multi-protein complexes in Gram-negative and Gram-positive (G+) bacteria, responsible for spreading antibiotic resistances and virulence factors among different species. Compared to Gram-negative bacteria, which establish close contacts for conjugative transfer via sex pili, G+ T4SSs are suggested to employ surface adhesins instead. One example is pCF10, an enterococcal conjugative sex-pheromone responsive plasmid with a narrow host range, thus disseminating genetic information only among closely related species. This MicroCommentary is dedicated to the crystal structure of the pCF10-encoded adhesion domain of PrgB presented by Schmitt et al. The authors show in their work that this adhesion domain is responsible for biofilm formation, tight binding and condensation of extracellular DNA (eDNA) and conjugative transfer of pCF10. A sophisticated two-step mechanism for highly efficient conjugative transfer is postulated, including the formation of PrgB-mediated long-range intercellular contacts by binding and establishment of shorter-range contacts via condensation of eDNA. PrgB binding to lipoteichoic acid on the recipient cell surface stabilizes junctions between the mating partners. The major findings by Schmitt et al. will be brought into a broader context and potential medical applications targeting eDNA as essential component in biofilm formation and conjugation will be discussed.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-10 of 13
Type of publication
journal article (13)
Type of content
peer-reviewed (12)
other academic/artistic (1)
Author/Editor
Wang, Xin (2)
Clarke, Robert (2)
Zhang, Yan (1)
Korhonen, Laura (1)
Lindholm, Dan (1)
Vertessy, Beata G. (1)
show more...
Fratiglioni, Laura (1)
Larson, Michael J (1)
Wang, Mei (1)
Boada, Mercè (1)
Liu, Yang (1)
Tsolaki, Magda (1)
Pasquier, Florence (1)
Powell, John F. (1)
Kumar, Rakesh (1)
Wang, Dong (1)
Li, Ke (1)
Liu, Ke (1)
Zhang, Yang (1)
Nàgy, Péter (1)
Kominami, Eiki (1)
van der Goot, F. Gis ... (1)
Ingelsson, Martin (1)
Lannfelt, Lars (1)
Aczel, Balazs (1)
Szaszi, Barnabas (1)
Newell, Ben R. (1)
Bonaldo, Paolo (1)
Thum, Thomas (1)
Adams, Christopher M (1)
Minucci, Saverio (1)
Vellenga, Edo (1)
Swärd, Karl (1)
Nilsson, Per (1)
Tinghög, Gustav, 197 ... (1)
De Milito, Angelo (1)
Zhang, Jian (1)
Shukla, Deepak (1)
Kågedal, Katarina (1)
Chen, Guoqiang (1)
Liu, Wei (1)
Dichgans, Martin (1)
Cheetham, Michael E. (1)
Sigurdson, Christina ... (1)
Zhang, Fan (1)
Gonzalez-Alegre, Ped ... (1)
Jin, Lei (1)
Goessler, Walter (1)
Chen, Qi (1)
Taylor, Mark J. (1)
show less...
University
Umeå University (9)
Stockholm University (8)
Linköping University (2)
Karolinska Institutet (2)
Royal Institute of Technology (1)
Uppsala University (1)
show more...
Mälardalen University (1)
Lund University (1)
Swedish University of Agricultural Sciences (1)
show less...
Language
English (13)
Research subject (UKÄ/SCB)
Natural sciences (10)
Medical and Health Sciences (7)
Engineering and Technology (1)
Social Sciences (1)

Year

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view