SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Kirchner T.) srt2:(2010-2014)"

Sökning: WFRF:(Kirchner T.) > (2010-2014)

  • Resultat 1-8 av 8
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Zanini, Luca, et al. (författare)
  • Measurement of Volatile Radionuclides Production and Release Yields followed by a Post-Irradiation Analysis of a Pb/Bi Filled Ta Target at ISOLDE
  • 2014
  • Ingår i: Nuclear Data Sheets. - : Elsevier BV. - 0090-3752. ; 119, s. 292-295
  • Tidskriftsartikel (refereegranskat)abstract
    • A crucial requirement in the development of liquid-metal spallation neutron target is knowledge of the composition and amount of volatile radionuclides that are released from the target during operation. It is also important to know the total amount produced, which could be released if there was an accident. One type is the lead-bismuth eutectic (LBE) target where different radionuclides can be produced following interaction with a high-energy proton beam, notably noble gases (Ar, Kr, Xe isotopes) and other relative volatile isotopes such as Hg and At. The results of an irradiation experiment performed at ISOLDE on a LBE target are compared with predictions from the MCNPX code using the latest developments on the Liege Intranuclear Cascade model (INCL4.6) and the CEM03 model. The calculations are able to reproduce the mass distribution of the radioisotopes produced, including the At production, where there is a significant contribution from secondary reactions. Subsequently, a post-irradiation examination of the irradiated target was performed. Investigations of both the tantalum target structure, in particular the beam window, and the lead-bismuth eutectic were performed using several experimental techniques. No sign of severe irradiation damage, previously observed in other ISOLDE targets, was found.
  •  
3.
  • Finan, B, et al. (författare)
  • Unimolecular dual incretins maximize metabolic benefits in rodents, monkeys, and humans
  • 2013
  • Ingår i: Science translational medicine. - : American Association for the Advancement of Science (AAAS). - 1946-6242 .- 1946-6234. ; 5:209, s. 209ra151-
  • Tidskriftsartikel (refereegranskat)abstract
    • Compared to best-in-class GLP-1 mono-agonists, unimolecular co-agonists of GLP-1 and GIP with optimized pharmacokinetics enhance glycemic and metabolic benefits in mammals.
  •  
4.
  •  
5.
  • McDonnell, J.J., et al. (författare)
  • How old is streamwater? : Open questions in catchment transit time conceptualization, modelling and analysis
  • 2010
  • Ingår i: Hydrological Processes. - : John Wiley & Sons. - 0885-6087 .- 1099-1085. ; 24:12, s. 1745-1754
  • Tidskriftsartikel (refereegranskat)abstract
    • The time water spends travelling subsurface through a catchment to the stream network (i.e. the catchment water transit time) fundamentally describes the storage, flow pathway heterogeneity and sources of water in a catchment. The distribution of transit times reflects how catchments retain and release water and solutes that in turn set biogeochemical conditions and affect contamination release or persistence. Thus, quan- tifying the transit time distribution provides an important constraint on biogeochemical processes and catchment sensitivity to anthropogenic inputs, contamination and land-use change. Although the assumptions and limitations of past and present transit time modelling approaches have been recently reviewed (McGuire and McDonnell, 2006), there remain many fundamental research challenges for understanding how transit time can be used to quantify catchment flow processes and aid in the development and testing of rainfall–runoff models. In this Commen- tary study, we summarize what we think are the open research questions in transit time research. These thoughts come from a 3-day workshop in January 2009 at the International Atomic Energy Agency in Vienna. We attempt to lay out a roadmap for this work for the hydrological commu- nity over the next 10 years. We do this by first defining what we mean (qualitatively and quantitatively) by transit time and then organize our vision around needs in transit time theory, needs in field studies of tran- sit time and needs in rainfall – runoff modelling. Our goal in presenting this material is to encourage widespread use of transit time information in process studies to provide new insights to catchment function and to inform the structural development and testing of hydrologic models.
  •  
6.
  •  
7.
  •  
8.
  • Wessels, Kathrin, et al. (författare)
  • Novel CHD7 mutations contributing to the mutation spectrum in patients with CHARGE syndrome
  • 2010
  • Ingår i: EUROPEAN JOURNAL OF MEDICAL GENETICS. - : Elsevier Science B.V., Amsterdam. - 1769-7212. ; 53:5, s. 280-285
  • Tidskriftsartikel (refereegranskat)abstract
    • CHARGE syndrome is an autosomal dominant inherited multiple malformation disorder typically characterized by coloboma, choanal atresia, hypoplastic semicircular canal, cranial nerve defects, cardiovascular malformations and ear abnormalities. Mutations in the chromodomain helicase DNA-binding protein 7 (CHD7) gene are the major cause of CHARGE syndrome. Mutation analysis was performed in 18 patients with firm or tentative clinical diagnosis of CHARGE syndrome. In this study eight mutations distributed across the gene were found. Five novel mutations - one missense (c.2936Tandgt;C), one nonsense (c.8093Candgt;A) and three frameshift mutations (c.804_805insAT, c.1757_1770del14, c.1793delA) - were identified. As far as familial data were available these mutations were found to have arisen de novo. Comparison of the clinical features of patients with the same mutation demonstrates that expression of the phenotype is highly variable. The mutation detection rate in this study was 44.4% in patients with a clinically established or suspected diagnosis of CHARGE syndrome.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-8 av 8

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy