SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Kleiven Svein 1966 ) srt2:(2020-2024)"

Search: WFRF:(Kleiven Svein 1966 ) > (2020-2024)

  • Result 1-10 of 44
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Cecchi, N. J., et al. (author)
  • Identifying Factors Associated with Head Impact Kinematics and Brain Strain in High School American Football via Instrumented Mouthguards
  • 2021
  • In: Annals of Biomedical Engineering. - : Springer Nature. - 0090-6964 .- 1573-9686. ; 49:10, s. 2814-2826
  • Journal article (peer-reviewed)abstract
    • Repeated head impact exposure and concussions are common in American football. Identifying the factors associated with high magnitude impacts aids in informing sport policy changes, improvements to protective equipment, and better understanding of the brain’s response to mechanical loading. Recently, the Stanford Instrumented Mouthguard (MiG2.0) has seen several improvements in its accuracy in measuring head kinematics and its ability to correctly differentiate between true head impact events and false positives. Using this device, the present study sought to identify factors (e.g., player position, helmet model, direction of head acceleration, etc.) that are associated with head impact kinematics and brain strain in high school American football athletes. 116 athletes were monitored over a total of 888 athlete exposures. 602 total impacts were captured and verified by the MiG2.0’s validated impact detection algorithm. Peak values of linear acceleration, angular velocity, and angular acceleration were obtained from the mouthguard kinematics. The kinematics were also entered into a previously developed finite element model of the human brain to compute the 95th percentile maximum principal strain. Overall, impacts were (mean ± SD) 34.0 ± 24.3 g for peak linear acceleration, 22.2 ± 15.4 rad/s for peak angular velocity, 2979.4 ± 3030.4 rad/s2 for peak angular acceleration, and 0.262 ± 0.241 for 95th percentile maximum principal strain. Statistical analyses revealed that impacts resulting in Forward head accelerations had higher magnitudes of peak kinematics and brain strain than Lateral or Rearward impacts and that athletes in skill positions sustained impacts of greater magnitude than athletes in line positions. 95th percentile maximum principal strain was significantly lower in the observed cohort of high school football athletes than previous reports of collegiate football athletes. No differences in impact magnitude were observed in athletes with or without previous concussion history, in athletes wearing different helmet models, or in junior varsity or varsity athletes. This study presents novel information on head acceleration events and their resulting brain strain in high school American football from our advanced, validated method of measuring head kinematics via instrumented mouthguard technology.
  •  
2.
  • Fahlstedt, Madelen, 1983-, et al. (author)
  • Influence of Strain post-processing on Brain Injury Prediction
  • 2022
  • In: Journal of Biomechanics. - : Elsevier BV. - 0021-9290 .- 1873-2380. ; 132
  • Journal article (peer-reviewed)abstract
    • Finite element head models are a tool to better understand brain injury mechanisms. Many of the models use strain as output but with different percentile values such as 100th, 95th, 90th, and 50th percentiles. Some use the element value, whereas other use the nodal average value for the element. Little is known how strain post-processing is affecting the injury predictions and evaluation of different prevention systems. The objective of this study was to evaluate the influence of strain output on injury prediction and ranking.& nbsp;Two models with different mesh densities were evaluated (KTH Royal Institute of Technology head model and the Total Human Models for Safety (THUMS)). Pulses from reconstructions of American football impacts with and without a diagnosis of mild traumatic brain injury were applied to the models. The value for 100th, 99th, 95th, 90th, and 50th percentile for element and nodal averaged element strain was evaluated based on peak values, injury risk functions, injury predictability, correlation in ranking, and linear correlation.& nbsp;The injury risk functions were affected by the post-processing of the strain, especially the 100th percentile element value stood out. Meanwhile, the area under the curve (AUC) value was less affected, as well as the correlation in ranking (Kendall's tau 0.71-1.00) and the linear correlation (Pearson's r2 0.72-1.00). With the results presented in this study, it is important to stress that the same post-processed strain should be used for injury predictions as the one used to develop the risk function.
  •  
3.
  • Fahlstedt, Madelen, 1983-, et al. (author)
  • Ranking and Rating Bicycle Helmet Safety Performance in Oblique Impacts Using Eight Different Brain Injury Models
  • 2021
  • In: Annals of Biomedical Engineering. - : Springer. - 0090-6964 .- 1573-9686.
  • Journal article (peer-reviewed)abstract
    • Bicycle helmets are shown to offer protection against head injuries. Rating methods and test standards are used to evaluate different helmet designs and safety performance. Both strain-based injury criteria obtained from finite element brain injury models and metrics derived from global kinematic responses can be used to evaluate helmet safety performance. Little is known about how different injury models or injury metrics would rank and rate different helmets. The objective of this study was to determine how eight brain models and eight metrics based on global kinematics rank and rate a large number of bicycle helmets (n=17) subjected to oblique impacts. The results showed that the ranking and rating are influenced by the choice of model and metric. Kendall’s tau varied between 0.50 and 0.95 when the ranking was based on maximum principal strain from brain models. One specific helmet was rated as 2-star when using one brain model but as 4-star by another model. This could cause confusion for consumers rather than inform them of the relative safety performance of a helmet. Therefore, we suggest that the biomechanics community should create a norm or recommendation for future ranking and rating methods.
  •  
4.
  • Henningsen, Mikkel Jon, et al. (author)
  • Subject-specific finite element head models for skull fracture evaluation—a new tool in forensic pathology
  • 2024
  • In: International journal of legal medicine. - : Springer Nature. - 0937-9827 .- 1437-1596. ; 138:4, s. 1447-1458
  • Journal article (peer-reviewed)abstract
    • Post-mortem computed tomography (PMCT) enables the creation of subject-specific 3D head models suitable for quantitative analysis such as finite element analysis (FEA). FEA of proposed traumatic events is an objective and repeatable numerical method for assessing whether an event could cause a skull fracture such as seen at autopsy. FEA of blunt force skull fracture in adults with subject-specific 3D models in forensic pathology remains uninvestigated. This study aimed to assess the feasibility of FEA for skull fracture analysis in routine forensic pathology. Five cases with blunt force skull fracture and sufficient information on the kinematics of the traumatic event to enable numerical reconstruction were chosen. Subject-specific finite element (FE) head models were constructed by mesh morphing based on PMCT 3D models and A Detailed and Personalizable Head Model with Axons for Injury Prediction (ADAPT) FE model. Morphing was successful in maintaining subject-specific 3D geometry and quality of the FE mesh in all cases. In three cases, the simulated fracture patterns were comparable in location and pattern to the fractures seen at autopsy/PMCT. In one case, the simulated fracture was in the parietal bone whereas the fracture seen at autopsy/PMCT was in the occipital bone. In another case, the simulated fracture was a spider-web fracture in the frontal bone, whereas a much smaller fracture was seen at autopsy/PMCT; however, the fracture in the early time steps of the simulation was comparable to autopsy/PMCT. FEA might be feasible in forensic pathology in cases with a single blunt force impact and well-described event circumstances.
  •  
5.
  • Huang, Qi, et al. (author)
  • A method for generating case-specific vehicle models from a single-view vehicle image for accurate pedestrian injury reconstructions
  • 2024
  • In: Accident Analysis and Prevention. - : Elsevier BV. - 0001-4575 .- 1879-2057. ; 200
  • Journal article (peer-reviewed)abstract
    • Developing vehicle finite element (FE) models that match real accident-involved vehicles is challenging. This is related to the intricate variety of geometric features and components. The current study proposes a novel method to efficiently and accurately generate case-specific buck models for car-to-pedestrian simulations. To achieve this, we implemented the vehicle side-view images to detect the horizontal position and roundness of two wheels to rectify distortions and deviations and then extracted the mid-section profiles for comparative calculations against baseline vehicle models to obtain the transformation matrices. Based on the generic buck model which consists of six key components and corresponding matrices, the case-specific buck model was generated semi-automatically based on the transformation metrics. Utilizing this image-based method, a total of 12 vehicle models representing four vehicle categories including family car (FCR), Roadster (RDS), small Sport Utility Vehicle (SUV), and large SUV were generated for car-to-pedestrian collision FE simulations in this study. The pedestrian head trajectories, total contact forces, head injury criterion (HIC), and brain injury criterion (BrIC) were analyzed comparatively. We found that, even within the same vehicle category and initial conditions, the variation in wrap around distance (WAD) spans 84–165 mm, in HIC ranges from 98 to 336, and in BrIC fluctuates between 1.25 and 1.46. These findings highlight the significant influence of vehicle frontal shape and underscore the necessity of using case-specific vehicle models in crash simulations. The proposed method provides a new approach for further vehicle structure optimization aiming at reducing pedestrian head injury and increasing traffic safety.
  •  
6.
  •  
7.
  • Huang, Qi, et al. (author)
  • Finite Element Analysis of Energy-Absorbing Floors for Reducing Head Injury Risk during Fall Accidents
  • 2023
  • In: Applied Sciences. - : Multidisciplinary Digital Publishing Institute (MDPI). - 2076-3417. ; 13:24
  • Journal article (peer-reviewed)abstract
    • Featured Application: The results proposed a new approach to evaluate the protection effectiveness of energy-absorbing floors for fall-related injury prevention. Also, it could help to reduce the huge associated costs related to fall-related injuries among the children and elderly population. Energy-absorbing floor (EAF) has been proposed as one of several biomechanically effective strategies to mitigate the risk of fall-related injuries by decreasing peak loads and enhancing system energy absorption. This study aims to compare the protective capacity of four commercially available EAF products (Igelkott Floor, Kradal, SmartCells, and OmniSports) in terms of head impacts using the finite element (FE) method. The stress–strain curves acquired from mechanical tests were applied to material models in LS-Dyna. The established FE models were then validated using Hybrid III or hemispheric drop tests to compare the acceleration–time curves between experiments and simulations. Finally, the validated FE models were utilized to simulate a typical pedestrian fall accident scenario. It was demonstrated that EAFs can substantially reduce the peak forces, acceleration, and velocity changes during fall-related head impacts. Specifically, in the accident reconstruction scenario, SmartCells provided the largest reduction in peak linear acceleration and skull fracture risk, while Igelkott Floor provided the largest reduction in peak angular velocity and concussion risk. This performance was caused by different energy absorption mechanisms. Consequently, the results can contribute to supporting the implementation of EAFs and determine the effectiveness of various protective strategies for fall-related head injury prevention.
  •  
8.
  • Huber, Colin M., et al. (author)
  • Finite element brain deformation in adolescent soccer heading
  • 2024
  • In: Computer Methods in Biomechanics and Biomedical Engineering. - : Informa UK Limited. - 1025-5842 .- 1476-8259. ; 27:10, s. 1239-1249
  • Journal article (peer-reviewed)abstract
    • Finite element (FE) modeling provides a means to examine how global kinematics of repetitive head loading in sports influences tissue level injury metrics. FE simulations of controlled soccer headers in two directions were completed using a human head FE model to estimate biomechanical loading on the brain by direction. Overall, headers were associated with 95th percentile peak maximum principal strains up to 0.07 and von Mises stresses up to 1450 Pa, and oblique headers trended toward higher values than frontal headers but below typical injury levels. These quantitative data provide insight into repetitive loading effects on the brain.
  •  
9.
  •  
10.
  • Ji, S., et al. (author)
  • Use of Brain Biomechanical Models for Monitoring Impact Exposure in Contact Sports
  • 2022
  • In: Annals of Biomedical Engineering. - : Springer Nature. - 0090-6964 .- 1573-9686. ; 50:11, s. 1389-1408
  • Journal article (peer-reviewed)abstract
    • Head acceleration measurement sensors are now widely deployed in the field to monitor head kinematic exposure in contact sports. The wealth of impact kinematics data provides valuable, yet challenging, opportunities to study the biomechanical basis of mild traumatic brain injury (mTBI) and subconcussive kinematic exposure. Head impact kinematics are translated into brain mechanical responses through physics-based computational simulations using validated brain models to study the mechanisms of injury. First, this article reviews representative legacy and contemporary brain biomechanical models primarily used for blunt impact simulation. Then, it summarizes perspectives regarding the development and validation of these models, and discusses how simulation results can be interpreted to facilitate injury risk assessment and head acceleration exposure monitoring in the context of contact sports. Recommendations and consensus statements are presented on the use of validated brain models in conjunction with kinematic sensor data to understand the biomechanics of mTBI and subconcussion. Mainly, there is general consensus that validated brain models have strong potential to improve injury prediction and interpretation of subconcussive kinematic exposure over global head kinematics alone. Nevertheless, a major roadblock to this capability is the lack of sufficient data encompassing different sports, sex, age and other factors. The authors recommend further integration of sensor data and simulations with modern data science techniques to generate large datasets of exposures and predicted brain responses along with associated clinical findings. These efforts are anticipated to help better understand the biomechanical basis of mTBI and improve the effectiveness in monitoring kinematic exposure in contact sports for risk and injury mitigation purposes. 
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-10 of 44

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view