SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Koh Jung Min) srt2:(2012)"

Search: WFRF:(Koh Jung Min) > (2012)

  • Result 1-2 of 2
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Klionsky, Daniel J., et al. (author)
  • Guidelines for the use and interpretation of assays for monitoring autophagy
  • 2012
  • In: Autophagy. - : Informa UK Limited. - 1554-8635 .- 1554-8627. ; 8:4, s. 445-544
  • Research review (peer-reviewed)abstract
    • In 2008 we published the first set of guidelines for standardizing research in autophagy. Since then, research on this topic has continued to accelerate, and many new scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Accordingly, it is important to update these guidelines for monitoring autophagy in different organisms. Various reviews have described the range of assays that have been used for this purpose. Nevertheless, there continues to be confusion regarding acceptable methods to measure autophagy, especially in multicellular eukaryotes. A key point that needs to be emphasized is that there is a difference between measurements that monitor the numbers or volume of autophagic elements (e.g., autophagosomes or autolysosomes) at any stage of the autophagic process vs. those that measure flux through the autophagy pathway (i.e., the complete process); thus, a block in macroautophagy that results in autophagosome accumulation needs to be differentiated from stimuli that result in increased autophagic activity, defined as increased autophagy induction coupled with increased delivery to, and degradation within, lysosomes (in most higher eukaryotes and some protists such as Dictyostelium) or the vacuole (in plants and fungi). In other words, it is especially important that investigators new to the field understand that the appearance of more autophagosomes does not necessarily equate with more autophagy. In fact, in many cases, autophagosomes accumulate because of a block in trafficking to lysosomes without a concomitant change in autophagosome biogenesis, whereas an increase in autolysosomes may reflect a reduction in degradative activity. Here, we present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macroautophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes. These guidelines are not meant to be a formulaic set of rules, because the appropriate assays depend in part on the question being asked and the system being used. In addition, we emphasize that no individual assay is guaranteed to be the most appropriate one in every situation, and we strongly recommend the use of multiple assays to monitor autophagy. In these guidelines, we consider these various methods of assessing autophagy and what information can, or cannot, be obtained from them. Finally, by discussing the merits and limits of particular autophagy assays, we hope to encourage technical innovation in the field.
  •  
2.
  • Estrada, Karol, et al. (author)
  • Genome-wide meta-analysis identifies 56 bone mineral density loci and reveals 14 loci associated with risk of fracture.
  • 2012
  • In: Nature genetics. - : Springer Science and Business Media LLC. - 1546-1718 .- 1061-4036. ; 44:5, s. 491-501
  • Journal article (peer-reviewed)abstract
    • Bone mineral density (BMD) is the most widely used predictor of fracture risk. We performed the largest meta-analysis to date on lumbar spine and femoral neck BMD, including 17 genome-wide association studies and 32,961 individuals of European and east Asian ancestry. We tested the top BMD-associated markers for replication in 50,933 independent subjects and for association with risk of low-trauma fracture in 31,016 individuals with a history of fracture (cases) and 102,444 controls. We identified 56 loci (32 new) associated with BMD at genome-wide significance (P < 5 × 10(-8)). Several of these factors cluster within the RANK-RANKL-OPG, mesenchymal stem cell differentiation, endochondral ossification and Wnt signaling pathways. However, we also discovered loci that were localized to genes not known to have a role in bone biology. Fourteen BMD-associated loci were also associated with fracture risk (P < 5 × 10(-4), Bonferroni corrected), of which six reached P < 5 × 10(-8), including at 18p11.21 (FAM210A), 7q21.3 (SLC25A13), 11q13.2 (LRP5), 4q22.1 (MEPE), 2p16.2 (SPTBN1) and 10q21.1 (DKK1). These findings shed light on the genetic architecture and pathophysiological mechanisms underlying BMD variation and fracture susceptibility.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-2 of 2
Type of publication
journal article (1)
research review (1)
Type of content
peer-reviewed (2)
Author/Editor
Khaw, Kay-Tee (1)
Wang, Jin (1)
Karlsson, Magnus (1)
Wang, Mei (1)
Vandenput, Liesbeth, ... (1)
Lorentzon, Mattias, ... (1)
show more...
Strålfors, Peter (1)
Kominami, Eiki (1)
Salvesen, Guy (1)
Viikari, Jorma (1)
Cooper, Cyrus (1)
LaCroix, Andrea Z. (1)
Sambrook, Philip N. (1)
Bonaldo, Paolo (1)
Minucci, Saverio (1)
Ohlsson, Claes, 1965 (1)
Kwan, Tony (1)
Pastinen, Tomi (1)
De Milito, Angelo (1)
Agholme, Lotta (1)
Kågedal, Katarina (1)
Durbeej-Hjalt, Madel ... (1)
Liu, Wei (1)
Hallmans, Göran (1)
Clarke, Robert (1)
Khusnutdinova, Elza (1)
Center, Jacqueline R (1)
Eisman, John A (1)
Nguyen, Tuan V (1)
Kumar, Ashok (1)
Eriksson, Joel (1)
Ridker, Paul M. (1)
Chasman, Daniel I. (1)
Amin, Najaf (1)
van Duijn, Cornelia ... (1)
Rose, Lynda M (1)
Kähönen, Mika (1)
Lehtimäki, Terho (1)
Brest, Patrick (1)
Simon, Hans-Uwe (1)
Mograbi, Baharia (1)
Thorleifsson, Gudmar (1)
Thorsteinsdottir, Un ... (1)
Stefansson, Kari (1)
Rotter, Jerome I. (1)
Shuldiner, Alan R. (1)
Melino, Gerry (1)
Mysorekar, Indira (1)
Zhu, Kun (1)
Albert, Matthew L (1)
show less...
University
University of Gothenburg (2)
Lund University (2)
Umeå University (1)
Uppsala University (1)
Linköping University (1)
Karolinska Institutet (1)
show more...
Swedish University of Agricultural Sciences (1)
show less...
Language
English (2)
Research subject (UKÄ/SCB)
Medical and Health Sciences (2)
Natural sciences (1)
Year

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view