SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Koltookian Michele) srt2:(2019)"

Search: WFRF:(Koltookian Michele) > (2019)

  • Result 1-3 of 3
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Biasoli, Deborah, et al. (author)
  • A synonymous germline variant in a gene encoding a cell adhesion molecule is associated with cutaneous mast cell tumour development in Labrador and Golden Retrievers
  • 2019
  • In: PLOS Genetics. - : PUBLIC LIBRARY SCIENCE. - 1553-7390 .- 1553-7404. ; 15:3
  • Journal article (peer-reviewed)abstract
    • Mast cell tumours are the most common type of skin cancer in dogs, representing a significant concern in canine health. The molecular pathogenesis is largely unknown, but breed-predisposition for mast cell tumour development suggests the involvement of inherited genetic risk factors in some breeds. In this study, we aimed to identify germline risk factors associated with the development of mast cell tumours in Labrador Retrievers, a breed with an elevated risk of mast cell tumour development. Using a methodological approach that combined a genome-wide association study, targeted next generation sequencing, and TaqMan genotyping, we identified a synonymous variant in the DSCAM gene on canine chromosome 31 that is associated with mast cell tumours in Labrador Retrievers. DSCAM encodes a cell-adhesion molecule. We showed that the variant has no effect on the DSCAM mRNA level but is associated with a significant reduction in the level of the DSCAM protein, suggesting that the variant affects the dynamics of DSCAM mRNA translation. Furthermore, we showed that the variant is also associated with mast cell tumours in Golden Retrievers, a breed that is closely related to Labrador Retrievers and that also has a predilection for mast cell tumour development. The variant is common in both Labradors and Golden Retrievers and consequently is likely to be a significant genetic contributor to the increased susceptibility of both breeds to develop mast cell tumours. The results presented here not only represent an important contribution to the understanding of mast cell tumour development in dogs, as they highlight the role of cell adhesion in mast cell tumour tumourigenesis, but they also emphasise the potential importance of the effects of synonymous variants in complex diseases such as cancer. Author summary The combination of various genetic and environmental risk factors makes the understanding of the molecular circuitry behind complex diseases, like cancer, a major challenge. The homogeneous nature of pedigree dog breed genomes makes these dogs ideal for the identification of both simple disease-causing genetic variants and genetic risk factors for complex diseases. Mast cell tumours are the most common type of canine skin cancer, and one of the most common cancers affecting dogs of most breeds. Several breeds, including Labrador Retrievers (which represent one of the most popular dog breeds), have an elevated risk of mast cell tumour development. Here, by using a methodological approach that combined different techniques, we identified a common inherited synonymous variant, that predisposes Labrador Retrievers to mast cell tumour development. Interestingly, we showed that this variant, despite its synonymous nature, appears to have an effect on translation dynamics as it is associated with reduced levels of DSCAM, a cell adhesion molecule. The results presented here reveal dysregulation of cell adhesion to be an important factor in mast cell tumour pathogenesis, and also highlight the important role that synonymous variants can play in complex diseases.
  •  
2.
  • Megquier, Kate, et al. (author)
  • BarkBase : Epigenomic Annotation of Canine Genomes
  • 2019
  • In: Genes. - : MDPI. - 2073-4425. ; 10:6
  • Journal article (peer-reviewed)abstract
    • Dogs are an unparalleled natural model for investigating the genetics of health and disease, particularly for complex diseases like cancer. Comprehensive genomic annotation of regulatory elements active in healthy canine tissues is crucial both for identifying candidate causal variants and for designing functional studies needed to translate genetic associations into disease insight. Currently, canine geneticists rely primarily on annotations of the human or mouse genome that have been remapped to dog, an approach that misses dog-specific features. Here, we describe BarkBase, a canine epigenomic resource available at barkbase.org. BarkBase hosts data for 27 adult tissue types, with biological replicates, and for one sample of up to five tissues sampled at each of four carefully staged embryonic time points. RNA sequencing is complemented with whole genome sequencing and with assay for transposase-accessible chromatin using sequencing (ATAC-seq), which identifies open chromatin regions. By including replicates, we can more confidently discern tissue-specific transcripts and assess differential gene expression between tissues and timepoints. By offering data in easy-to-use file formats, through a visual browser modeled on similar genomic resources for human, BarkBase introduces a powerful new resource to support comparative studies in dogs and humans.
  •  
3.
  • Megquier, Katherine, et al. (author)
  • Comparative Genomics Reveals Shared Mutational Landscape in Canine Hemangiosarcoma and Human Angiosarcoma
  • 2019
  • In: Molecular Cancer Research. - 1541-7786 .- 1557-3125. ; 17:12, s. 2410-2421
  • Journal article (peer-reviewed)abstract
    • Angiosarcoma is a highly aggressive cancer of blood vessel-forming cells with few effective treatment options and high patient mortality. It is both rare and heterogenous, making large, well-powered genomic studies nearly impossible. Dogs commonly suffer from a similar cancer, called hemangiosarcoma, with breeds like the golden retriever carrying heritable genetic factors that put them at high risk. If the clinical similarity of canine hemangiosarcoma and human angiosarcoma reflects shared genomic etiology, dogs could be a critically needed model for advancing angiosarcoma research. We assessed the genomic landscape of canine hemangiosarcoma via whole-exome sequencing (47 golden retriever hemangiosarcomas) and RNA sequencing (74 hemangiosarcomas from multiple breeds). Somatic coding mutations occurred most frequently in the tumor suppressor TP53 (59.6% of cases) as well as two genes in the PI3K pathway: the oncogene PIK3CA (29.8%) and its regulatory subunit PIK3R1 (8.5%). The predominant mutational signature was the age-associated deamination of cytosine to thymine. As reported in human angiosarcoma, CDKN2A/B was recurrently deleted and VEGFA, KDR, and KIT recurrently gained. We compared the canine data to human data recently released by The Angiosarcoma Project, and found many of the same genes and pathways significantly enriched for somatic mutations, particularly in breast and visceral angiosarcomas. Canine hemangiosarcoma closely models the genomic landscape of human angiosarcoma of the breast and viscera, and is a powerful tool for investigating the pathogenesis of this devastating disease. IMPLICATIONS: We characterize the genomic landscape of canine hemangiosarcoma and demonstrate its similarity to human angiosarcoma.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-3 of 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view