SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Kozerke Sebastian) srt2:(2015-2019)"

Search: WFRF:(Kozerke Sebastian) > (2015-2019)

  • Result 1-2 of 2
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Dyverfeldt, Petter, et al. (author)
  • 4D flow cardiovascular magnetic resonance consensus statement
  • 2015
  • In: Journal of Cardiovascular Magnetic Resonance. - : BioMed Central / Informa Healthcare. - 1097-6647 .- 1532-429X. ; 17:72
  • Research review (peer-reviewed)abstract
    • Pulsatile blood flow through the cavities of the heart and great vessels is time-varying and multidirectional. Access to all regions, phases and directions of cardiovascular flows has formerly been limited. Four-dimensional (4D) flow cardiovascular magnetic resonance (CMR) has enabled more comprehensive access to such flows, with typical spatial resolution of 1.5x1.5x1.5 - 3x3x3 mm(3), typical temporal resolution of 30-40 ms, and acquisition times in the order of 5 to 25 min. This consensus paper is the work of physicists, physicians and biomedical engineers, active in the development and implementation of 4D Flow CMR, who have repeatedly met to share experience and ideas. The paper aims to assist understanding of acquisition and analysis methods, and their potential clinical applications with a focus on the heart and greater vessels. We describe that 4D Flow CMR can be clinically advantageous because placement of a single acquisition volume is straightforward and enables flow through any plane across it to be calculated retrospectively and with good accuracy. We also specify research and development goals that have yet to be satisfactorily achieved. Derived flow parameters, generally needing further development or validation for clinical use, include measurements of wall shear stress, pressure difference, turbulent kinetic energy, and intracardiac flow components. The dependence of measurement accuracy on acquisition parameters is considered, as are the uses of different visualization strategies for appropriate representation of time-varying multidirectional flow fields. Finally, we offer suggestions for more consistent, user-friendly implementation of 4D Flow CMR acquisition and data handling with a view to multicenter studies and more widespread adoption of the approach in routine clinical investigations.
  •  
2.
  • Ibanez, Borja, et al. (author)
  • Cardiac MRI Endpoints in Myocardial Infarction Experimental and Clinical Trials : JACC Scientific Expert Panel
  • 2019
  • In: Journal of the American College of Cardiology. - : Elsevier BV. - 0735-1097. ; 74:2, s. 238-256
  • Research review (peer-reviewed)abstract
    • After a reperfused myocardial infarction (MI), dynamic tissue changes occur (edema, inflammation, microvascular obstruction, hemorrhage, cardiomyocyte necrosis, and ultimately replacement by fibrosis). The extension and magnitude of these changes contribute to long-term prognosis after MI. Cardiac magnetic resonance (CMR) is the gold-standard technique for noninvasive myocardial tissue characterization. CMR is also the preferred methodology for the identification of potential benefits associated with new cardioprotective strategies both in experimental and clinical trials. However, there is a wide heterogeneity in CMR methodologies used in experimental and clinical trials, including time of post-MI scan, acquisition protocols, and, more importantly, selection of endpoints. There is a need for standardization of these methodologies to improve the translation into a real clinical benefit. The main objective of this scientific expert panel consensus document is to provide recommendations for CMR endpoint selection in experimental and clinical trials based on pathophysiology and its association with hard outcomes.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-2 of 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view