SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Krantz Rülcher Christina) srt2:(2000)"

Search: WFRF:(Krantz Rülcher Christina) > (2000)

  • Result 1-2 of 2
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Johansson, E., et al. (author)
  • Chlorination and biodegradation of lignin
  • 2000
  • In: Soil Biology and Biochemistry. - 0038-0717 .- 1879-3428. ; 32:7, s. 1029-1032
  • Journal article (peer-reviewed)abstract
    • Recent research has shown that large amounts of high-molecular weight organic chlorine of unknown origin are present in the terrestrial environment. There are indications that an underlying process may be microorganisms which produce reactive chlorine that chemically degrades organic matter and facilitates degradation of recalcitrant organic matter on one hand, and on the other hand causes a formation of organic chlorine. Our aim was to test one part of this hypothesis by investigating whether reactive chlorine facilitates microbial degradation of lignin. Different concentrations of chlorine dioxide were added to the autoclaved lignin suspension. Mycelium of the white-rot fungus P. chrysosporium was used to inoculate flasks with the lignin solutions. The evolution of CO2 was followed during 8 d of continuous measurement. At the end of the experiment the solutions were analyzed for organic chlorine. The amount of CO2 evolved was variable, but the results were repeatedable, addition of chlorine dioxide to the lignin solutions caused an increase in the mineralization by P. chrysosporium that increased with increasing additions of chlorine dioxide. This suggests that exposure of lignin to reactive chlorine enhance its biodegradability. The most likely cause of the observed effect is that the addition of chlorine dioxide initiated a fragmentation and oxidation of the lignin, thus rendering a more easily degraded substrate. However, the results may also be interpreted as if an additional cause to the observed effect is that the chlorination in itself somehow enhanced degradation. The amount of organically-bound chlorine decreased during the incubation, and the decrease was more pronounced with the chlorination of lignin, whereas no change at all was observable in the control batches. This makes it tempting to suggest that P. chrysosporium rather than having an enzyme system just capable of handling the chlorinated compounds, actually has a system that preferentially degrades such compounds. (C) 2000 Elsevier Science Ltd.
  •  
2.
  • Winquist, Fredrik, et al. (author)
  • A hybrid electronic tongue
  • 2000
  • In: Analytica Chimica Acta. - 0003-2670 .- 1873-4324. ; 406:2, s. 147-157
  • Journal article (peer-reviewed)abstract
    • A hybrid electronic tongue is described based on a combination of potentiometry, voltammetry and conductivity. It was used for classification of six different types of fermented milk. Using ion-selective electrodes, pH, carbon dioxide and chloride ion concentrations were measured. The voltammetric electronic tongue consisted of six working electrodes of different metals (gold, iridium, palladium, platinum, rhenium and rhodium) and an Ag/AgCl reference electrode. The measurement principle is based on pulse voltammetry in which current transients are measured due to the onset of voltage pulses at decreasing potentials. The data obtained from the measurements were treated by multivariate data processing based on principal components analysis and an artificial neural net. The hybrid tongue could separate all six samples. Also, the nature of the micro-organisms in the different fermentations was reflected in the principal component analysis. Copyright (C) 2000 Elsevier Science B.V.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-2 of 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view