SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Kromer Markus) srt2:(2016)"

Search: WFRF:(Kromer Markus) > (2016)

  • Result 1-8 of 8
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Bulla, M., et al. (author)
  • Predicting polarization signatures for double-detonation and delayed-detonation models of Type Ia supernovae
  • 2016
  • In: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 462:1, s. 1039-1056
  • Journal article (peer-reviewed)abstract
    • Calculations of synthetic spectropolarimetry are one means to test multidimensional explosion models for Type Ia supernovae. In a recent paper, we demonstrated that the violent merger of a 1.1 and 0.9 M-circle dot white dwarf binary system is too asymmetric to explain the low polarization levels commonly observed in normal Type Ia supernovae. Here, we present polarization simulations for two alternative scenarios: the sub-Chandrasekhar mass double-detonation and the Chandrasekhar mass delayed-detonation model. Specifically, we study a 2D double-detonation model and a 3D delayed-detonation model, and calculate polarization spectra for multiple observer orientations in both cases. We find modest polarization levels (<1 per cent) for both explosion models. Polarization in the continuum peaks at similar to 0.1-0.3 per cent and decreases aftermaximum light, in excellent agreement with spectropolarimetric data of normal Type Ia supernovae. Higher degrees of polarization are found across individual spectral lines. In particular, the synthetic Si II lambda 6355 profiles are polarized at levels that match remarkably well the values observed in normal Type Ia supernovae, while the low degrees of polarization predicted across the O I lambda 7774 region are consistent with the non-detection of this feature in current data. We conclude that our models can reproduce many of the characteristics of both flux and polarization spectra for well-studied Type Ia supernovae, such as SN 2001el and SN 2012fr. However, the two models considered here cannot account for the unusually high level of polarization observed in extreme cases such as SN 2004dt.
  •  
2.
  • Bulla, M., et al. (author)
  • Type Ia supernovae from violent mergers of carbon-oxygen white dwarfs : polarization signatures
  • 2016
  • In: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 455:1, s. 1060-1070
  • Journal article (peer-reviewed)abstract
    • The violent merger of two carbon-oxygen white dwarfs has been proposed as a viable progenitor for some Type Ia supernovae. However, it has been argued that the strong ejecta asymmetries produced by this model might be inconsistent with the low degree of polarization typically observed in Type Ia supernova explosions. Here, we test this claim by carrying out a spectropolarimetric analysis for the model proposed by Pakmor et al. for an explosion triggered during the merger of a 1.1 and 0.9 M-circle dot carbon-oxygen white dwarf binary system. Owing to the asymmetries of the ejecta, the polarization signal varies significantly with viewing angle. We find that polarization levels for observers in the equatorial plane are modest (less than or similar to 1 per cent) and show clear evidence for a dominant axis, as a consequence of the ejecta symmetry about the orbital plane. In contrast, orientations out of the plane are associated with higher degrees of polarization and departures from a dominant axis. While the particular model studied here gives a good match to highly polarized events such as SN 2004dt, it has difficulties in reproducing the low polarization levels commonly observed in normal Type Ia supernovae. Specifically, we find that significant asymmetries in the element distribution result in a wealth of strong polarization features that are not observed in the majority of currently available spectropolarimetric data of Type Ia supernovae. Future studies will map out the parameter space of the merger scenario to investigate if alternative models can provide better agreement with observations.
  •  
3.
  • Gall, E. E. E., et al. (author)
  • Applying the expanding photosphere and standardized candle methods to Type II-Plateau supernovae at cosmologically significant redshifts
  • 2016
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 592
  • Journal article (peer-reviewed)abstract
    • Based on optical imaging and spectroscopy of the Type II-Plateau SN 2013eq, we present a comparative study of commonly used distance determination methods based on Type II supernovae. The occurrence of SN 2013eq in the Hubble flow (z = 0.041 +/- 0.001) prompted us to investigate the implications of the difference between angular and luminosity distances within the framework of the expanding photosphere method (EPM) that relies upon a relation between flux and angular size to yield a distance. Following a re-derivation of the basic equations of the EPM for SNe at non-negligible redshifts, we conclude that the EPM results in an angular distance. The observed flux should be converted into the SN rest frame and the angular size, theta, has to be corrected by a factor of (1 + z)(2). Alternatively, the EPM angular distance can be converted to a luminosity distance by implementing a modification of the angular size. For SN 2013eq, we find EPM luminosity distances of D-L = 151 +/- 18 Mpc and D-L = 164 +/- 20 Mpc by making use of different sets of dilution factors taken from the literature. Application of the standardized candle method for Type II-P SNe results in an independent luminosity distance estimate (D-L = 168 +/- 16 Mpc) that is consistent with the EPM estimate.
  •  
4.
  • Kromer, Markus, et al. (author)
  • The peculiar Type Ia supernova iPTF14atg : Chandrasekhar-mass explosion or violent merger?
  • 2016
  • In: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 459:4, s. 4428-4439
  • Journal article (peer-reviewed)abstract
    • iPTF14atg, a subluminous peculiar Type Ia supernova (SN Ia) similar to SN 2002es, is the first SN Ia for which a strong UV flash was observed in the early-time light curves. This has been interpreted as evidence for a single-degenerate (SD) progenitor system, where such a signal is expected from interactions between the SN ejecta and the non-degenerate companion star. Here, we compare synthetic observables of multidimensional state-of-the-art explosion models for different progenitor scenarios to the light curves and spectra of iPTF14atg. From our models, we have difficulties explaining the spectral evolution of iPTF14atg within the SD progenitor channel. In contrast, we find that a violent merger of two carbon-oxygen white dwarfs with 0.9 and 0.76 M-aS (TM), respectively, provides an excellent match to the spectral evolution of iPTF14atg from 10 d before to several weeks after maximum light. Our merger model does not naturally explain the initial UV flash of iPTF14atg. We discuss several possibilities like interactions of the SN ejecta with the circumstellar medium and surface radioactivity from an He-ignited merger that may be able to account for the early UV emission in violent merger models.
  •  
5.
  • Latour, M., et al. (author)
  • Quantitative spectral analysis of the sdB star HD188112 : A helium-core white dwarf progenitor
  • 2016
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 585
  • Journal article (peer-reviewed)abstract
    • Context. HD 188112 is a bright (V = 10 : 2 mag) hot subdwarf B (sdB) star with a mass too low to ignite core helium burning and is therefore considered a pre-extremely low-mass (ELM) white dwarf (WD). ELM WDs (M less than or similar to 0.3 M-circle dot) are He-core objects produced by the evolution of compact binary systems. Aims. We present in this paper a detailed abundance analysis of HD188112 based on high-resolution Hubble Space Telescope (HST) near-and far-ultraviolet spectroscopy. We also constrain the mass of the star's companion. Methods. We use hybrid non-LTE model atmospheres to fit the observed spectral lines, and to derive the abundances of more than a dozen elements and the rotational broadening of metallic lines. Results. We confirm the previous binary system parameters by combining radial velocities measured in our UV spectra with the previously published values. The system has a period of 0.60658584 days and a WD companion with M >= 0.70 M-circle dot. By assuming a tidally locked rotation combined with the projected rotational velocity (v sin i = 7.9 +/- 0.3 km s(-1)), we constrain the companion mass to be between 0.9 and 1.3 M-circle dot. We further discuss the future evolution of the system as a potential progenitor of an underluminous type Ia supernova. We measure abundances for Mg, Al, Si, P, S, Ca, Ti, Cr, Mn, Fe, Ni, and Zn, and for the trans-iron elements Ga, Sn, and Pb. In addition, we derive upper limits for the C, N, O elements and find HD188112 to be strongly depleted in carbon. We find evidence of non-LTE e ff ects on the line strength of some ionic species such as Si II and Ni II. The metallic abundances indicate that the star is metal-poor, with an abundance pattern most likely produced by diffusion effects.
  •  
6.
  • Magee, M. R., et al. (author)
  • The type Iax supernova, SN 2015H A white dwarf deflagration candidate
  • 2016
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 589
  • Journal article (peer-reviewed)abstract
    • We present results based on observations of SN 2015H which belongs to the small group of objects similar to SN 2002cx, otherwise known as type Iax supernovae. The availability of deep pre-explosion imaging allowed us to place tight constraints on the explosion epoch. Our observational campaign began approximately one day post-explosion, and extended over a period of about 150 days post maximum light, making it one of the best observed objects of this class to date. We find a peak magnitude of M-r = 17.27 +/- 0.07, and a (Delta m(15))(r) = 0.69 +/- 0.04. Comparing our observations to synthetic spectra generated from simulations of deflagrations of Chandrasekhar mass carbon-oxygen white dwarfs, we find reasonable agreement with models of weak deflagrations that result in the ejection of similar to 0.2 M-circle dot of material containing similar to 0.07 M-circle dot of Ni-56. The model light curve however, evolves more rapidly than observations, suggesting that a higher ejecta mass is to be favoured. Nevertheless, empirical modelling of the pseudo-bolometric light curve suggests that less than or similar to 0.6 M-circle dot of material was ejected, implying that the white dwarf is not completely disrupted, and that a bound remnant is a likely outcome.
  •  
7.
  • Seitenzahl, Ivo R., et al. (author)
  • Three-dimensional simulations of gravitationally confined detonations compared to observations of SN 1991T
  • 2016
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 592
  • Journal article (peer-reviewed)abstract
    • The gravitationally confined detonation (GCD) model has been proposed as a possible explosion mechanism for Type Ia supernovae in the single-degenerate evolution channel. It starts with ignition of a deflagration in a single off-centre bubble in a near-Chandrasekhar-mass white dwarf. Driven by buoyancy, the deflagration flame rises in a narrow cone towards the surface. For the most part, the main component of the flow of the expanding ashes remains radial, but upon reaching the outer, low-pressure layers of the white dwarf, an additional lateral component develops. This causes the deflagration ashes to converge again at the opposite side, where the compression heats fuel and a detonation may be launched. We first performed five three-dimensional hydrodynamic simulations of the deflagration phase in 1.4 M-circle dot carbon/oxygen white dwarfs at intermediate-resolution (256(3) computational zones). We confirm that the closer the initial deflagration is ignited to the centre, the slower the buoyant rise and the longer the deflagration ashes takes to break out and close in on the opposite pole to collide. To test the GCD explosion model, we then performed a high-resolution (512(3) computational zones) simulation for a model with an ignition spot offset near the upper limit of what is still justifiable, 200 km. This high-resolution simulation met our deliberately optimistic detonation criteria, and we initiated a detonation. The detonation burned through the white dwarf and led to its complete disruption. For this model, we determined detailed nucleosynthetic yields by post-processing 10(6) tracer particles with a 384 nuclide reaction network, and we present multi-band light curves and time-dependent optical spectra. We find that our synthetic observables show a prominent viewing-angle sensitivity in ultraviolet and blue wavelength bands, which contradicts observed SNe Ia. The strong dependence on the viewing angle is caused by the asymmetric distribution of the deflagration ashes in the outer ejecta layers. Finally, we compared our model to SN 1991T. The overall flux level of the model is slightly too low, and the model predicts pre-maximum light spectral features due to Ca, S, and Si that are too strong. Furthermore, the model chemical abundance stratification qualitatively disagrees with recent abundance tomography results in two key areas: our model lacks low-velocity stable Fe and instead has copious amounts of high-velocity Ni-56 and stable Fe. We therefore do not find good agreement of the model with SN 1991T.
  •  
8.
  • Smartt, S. J., et al. (author)
  • A SEARCH FOR AN OPTICAL COUNTERPART TO THE GRAVITATIONAL-WAVE EVENT GW151226
  • 2016
  • In: Astrophysical Journal Letters. - 2041-8205 .- 2041-8213. ; 827:2
  • Journal article (peer-reviewed)abstract
    • We present a search for an electromagnetic counterpart of the gravitational-wave source GW151226. Using the Pan-STARRS1 telescope we mapped out 290 square degrees in the optical i(P1) filter, starting 11.5 hr after the LIGO information release and lasting for an additional 28 days. The first observations started 49.5 hr after the time of the GW151226 detection. We typically reached sensitivity limits of i(P1) = 20.3-20.8 and covered 26.5% of the LIGO probability skymap. We supplemented this with ATLAS survey data, reaching 31% of the probability region to shallower depths of m similar or equal to 19. We found 49 extragalactic transients (that are not obviously active galactic nuclei), including a faint transient in a galaxy at 7 Mpc (a luminous blue variable outburst) plus a rapidly decaying M-dwarf flare. Spectral classification of 20 other transient events showed them all to be supernovae. We found an unusual transient, PS15dpn, with an explosion date temporally coincident with GW151226, that evolved into a type Ibn supernova. The redshift of the transient is secure at z = 0.1747 +/- 0.0001 and we find it unlikely to be linked, since the luminosity distance has a negligible probability of being consistent with that of GW151226. In the 290 square degrees surveyed we therefore do not find a likely counterpart. However we show that our survey strategy would be sensitive to NS-NS mergers producing kilonovae at D-L less than or similar to 100 Mpc, which is promising for future LIGO/Virgo searches.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-8 of 8

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view