SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Kuhlmann A.) srt2:(2010-2014)"

Search: WFRF:(Kuhlmann A.) > (2010-2014)

  • Result 1-10 of 13
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Betoule, M., et al. (author)
  • Improved cosmological constraints from a joint analysis of the SDSS-II and SNLS supernova samples
  • 2014
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 568, s. A22-
  • Journal article (peer-reviewed)abstract
    • Aims. We present cosmological constraints from a joint analysis of type la supernova (SN Ia) observations obtained by the SDSS-II and SNLS collaborations. The dataset includes several low-redshift samples (z < 0.1), all three seasons from the SDSS-11 (0.05 < z < 0.4), and three years from SNLS (0.2 < z < 1), and it totals 740 spectroscopically confirmed type la supernovae with high quality light curves. Methods. We followed the methods and assumptions of the SNLS three-year data analysis except for the following important improvements: I) the addition of the full SDSS-II spectroscopically-confirmed SN la sample in both the training of the SALT2 light-curve model and in the Hubble diagram analysis (374 SNe); 2) intercalibration of the SNLS and SDSS surveys and reduced systematic uncertainties in the photometric calibration, performed blindly with respect to the cosmology analysis; and 3) a thorough investigation of systematic errors associated with the SALT2 modeling of SN la light curves. Results. We produce recalibrated SN la light curves and associated distances for the SDSS-II and SNLS samples. The large SOSS-II sample provides an effective, independent, low -z anchor for the Hubble diagram and reduces the systematic error from calibration systematics in the low -z SN sample. For a flat ACDM cosmology, we find Omega(m), = 0.295 0.034 (stat+sys), a value consistent with the most recent cosmic microwave background (CMB) measurement from the Planck and WMAP experiments. Our result is 1.8 sigma (stat+sys) different than the previously published result of SNLS three-year data. The change is due primarily to improvements in the SNLS photometric calibration. When combined with CMB constraints, we measure a constant dark energy equation of state parameter omega = -1.018 +/- 0,057 (sral+sys) for a fiat universe. Adding baryon acoustic oscillation distance measurements gives similar constraints: omega = 59 -1.027 0.055. Our supernova measurements provide the most stringent constraints to date on the nature of dark energy.
  •  
2.
  •  
3.
  • Heiss, M., et al. (author)
  • Self-assembled quantum dots in a nanowire system for quantum photonics
  • 2013
  • In: Nature Materials. - 1476-4660. ; 12:5, s. 439-444
  • Journal article (peer-reviewed)abstract
    • Quantum dots embedded within nanowires represent one of the most promising technologies for applications in quantum photonics. Whereas the top-down fabrication of such structures remains a technological challenge, their bottom-up fabrication through self-assembly is a potentially more powerful strategy. However, present approaches often yield quantum dots with large optical linewidths, making reproducibility of their physical properties difficult. We present a versatile quantum-dot-innanowire system that reproducibly self-assembles in core-shell GaAs/AlGaAs nanowires. The quantum dots form at the apex of a GaAs/AlGaAs interface, are highly stable, and can be positioned with nanometre precision relative to the nanowire centre. Unusually, their emission is blue-shifted relative to the lowest energy continuum states of the GaAs core. Large-scale electronic structure calculations show that the origin of the optical transitions lies in quantum confinement due to Al-rich barriers. By emitting in the red and self-assembling on silicon substrates, these quantum dots could therefore become building blocks for solid-state lighting devices and third-generation solar cells.
  •  
4.
  • Rehn, M., et al. (author)
  • Unusual increase of psittacosis in southern Sweden linked to wild bird exposure, January to April 2013
  • 2013
  • In: Eurosurveillance. - 1025-496X .- 1560-7917. ; 18:19, s. 13-20
  • Journal article (peer-reviewed)abstract
    • Free-living wild birds worldwide act as reservoir for Chlamydia psittaci, but the risk of transmission to humans through contact with wild birds has not been widely documented. From 12 January to April 9 2013, a total of 25 cases of psittacosis were detected in southern Sweden, about a threefold increase compared with the mean of the previous 10 years. A matched case-control study investigating both domestic and wild bird exposure showed that cases were more likely than controls to have cleaned wild bird feeders or been exposed to wild bird droppings in other ways (OR: 10.1; 95% CI: 2.1-47.9). We recommend precautionary measures such as wetting bird feeders before cleaning them, to reduce the risk of transmission of C. psittaci when in contact with bird droppings. Furthermore, C. psittaci should be considered for inclusion in laboratory diagnostic routines when analysing samples from patients with atypical pneumonia, since our findings suggest that psittacosis is underdiagnosed.
  •  
5.
  • Kessler, Richard, et al. (author)
  • Results from the Supernova Photometric Classification Challenge
  • 2010
  • In: Publications of the Astronomical Society of the Pacific. - : IOP Publishing. - 0004-6280 .- 1538-3873. ; 122:898, s. 1415-1431
  • Journal article (peer-reviewed)abstract
    • We report results from the Supernova Photometric Classification Challenge (SNPhotCC), a publicly released mix of simulated supernovae (SNe), with types (Ia, Ibc, and II) selected in proportion to their expected rates. The simulation was realized in the griz filters of the Dark Energy Survey (DES) with realistic observing conditions (sky noise, point-spread function, and atmospheric transparency) based on years of recorded conditions at the DES site. Simulations of non-Ia-type SNe are based on spectroscopically confirmed light curves that include unpublished non-Ia samples donated from the Carnegie Supernova Project (CSP), the Supernova Legacy Survey (SNLS), and the Sloan Digital Sky Survey-II (SDSS-II). A spectroscopically confirmed subset was provided for training. We challenged scientists to run their classification algorithms and report a type and photo-z for each SN. Participants from 10 groups contributed 13 entries for the sample that included a host-galaxy photo-z for each SN and nine entries for the sample that had no redshift information. Several different classification strategies resulted in similar performance, and for all entries the performance was significantly better for the training subset than for the unconfirmed sample. For the spectroscopically unconfirmed subset, the entry with the highest average figure of merit for classifying SNe Ia has an efficiency of 0.96 and an SN Ia purity of 0.79. As a public resource for the future development of photometric SN classification and photo-z estimators, we have released updated simulations with improvements based on our experience from the SNPhotCC, added samples corresponding to the Large Synoptic Survey Telescope (LSST) and the SDSS-II, and provided the answer keys so that developers can evaluate their own analysis.
  •  
6.
  •  
7.
  •  
8.
  • Campbell, Heather, et al. (author)
  • COSMOLOGY WITH PHOTOMETRICALLY CLASSIFIED TYPE Ia SUPERNOVAE FROM THE SDSS-II SUPERNOVA SURVEY
  • 2013
  • In: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 763:2, s. 88-
  • Journal article (peer-reviewed)abstract
    • We present the cosmological analysis of 752 photometrically classified Type Ia Supernovae (SNe Ia) obtained from the full Sloan Digital Sky Survey II (SDSS-II) Supernova (SN) Survey, supplemented with host-galaxy spectroscopy from the SDSS-III Baryon Oscillation Spectroscopic Survey. Our photometric-classification method is based on the SN classification technique of Sako et al., aided by host-galaxy redshifts (0.05 < z < 0.55). SuperNova ANAlysis simulations of our methodology estimate that we have an SN Ia classification efficiency of 70.8%, with only 3.9% contamination from core-collapse (non-Ia) SNe. We demonstrate that this level of contamination has no effect on our cosmological constraints. We quantify and correct for our selection effects (e. g., Malmquist bias) using simulations. When fitting to a flat.CDM cosmological model, we find that our photometric sample alone gives Omega(m) = 0.24(-0.05)(+0.07) (statistical errors only). If we relax the constraint on flatness, then our sample provides competitive joint statistical constraints on Omega(m) and Omega(Lambda), comparable to those derived from the spectroscopically confirmed Three-year Supernova Legacy Survey (SNLS3). Using only our data, the statistics-only result favors an accelerating universe at 99.96% confidence. Assuming a constant wCDM cosmological model, and combining with H-0, cosmic microwave background, and luminous red galaxy data, we obtain w = -0.96(-0.10)(+0.10), Omega(m) = 0.29(-0.02)(+0.02), and Omega(k) = 0.00(-0.02)(+0.03)(statistical errors only), which is competitive with similar spectroscopically confirmed SNe Ia analyses. Overall this comparison is reassuring, considering the lower redshift leverage of the SDSS-II SN sample (z < 0.55) and the lack of spectroscopic confirmation used herein. These results demonstrate the potential of photometrically classified SN Ia samples in improving cosmological constraints.
  •  
9.
  • Kessler, Richard, et al. (author)
  • Photometric Estimates of Redshifts and Distance Moduli for Type Ia Supernovae
  • 2010
  • In: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 717:1, s. 40-57
  • Journal article (peer-reviewed)abstract
    • Large planned photometric surveys will discover hundreds of thousands of supernovae (SNe), outstripping the resources available for spectroscopic follow-up and necessitating the development of purely photometric methods to exploit these events for cosmological study. We present a light curve fitting technique for type Ia supernova (SN Ia) photometric redshift (photo-z) estimation in which the redshift is determined simultaneously with the other fit parameters. We implement this "LCFIT+Z" technique within the frameworks of the MLCS2K2 and SALTII light curve fit methods and determine the precision on the redshift and distance modulus. This method is applied to a spectroscopically confirmed sample of 296 SNe Ia from the Sloan Digital Sky Survey-II (SDSS-II) SN Survey and 37 publicly available SNe Ia from the Supernova Legacy Survey (SNLS). We have also applied the method to a large suite of realistic simulated light curves for existing and planned surveys, including the SDSS, SNLS, and the Large Synoptic Survey Telescope. When intrinsic SN color fluctuations are included, the photo-z precision for the simulation is consistent with that in the data. Finally, we compare the LCFIT+Z photo-z precision with previous results using color-based SN photo-z estimates.
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-10 of 13

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view