SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Kumar Kamlesh) srt2:(2020-2023)"

Search: WFRF:(Kumar Kamlesh) > (2020-2023)

  • Result 1-2 of 2
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Yadav, Jitendra Kumar, et al. (author)
  • Isonicotinate-Zn(ii)/Cd(ii) bridged dicobaloximes : synthesis, characterization and electrocatalytic proton reduction studies
  • 2023
  • In: New Journal of Chemistry. - 1144-0546. ; 47:44, s. 20583-20593
  • Journal article (peer-reviewed)abstract
    • Herein, we present the synthesis of two new dicobaloxime complexes, [{ClCo(dmgH)2(4-PyCOO)}2Zn(DMF)2] (1) and [{ClCo(dmgH)2(4-PyCOO)}2Cd(H2O)3(DMF)].4H2O (2) bridged by isonicotinate-Zn(ii) and Cd(ii) moieties. These complexes were synthesized upon reaction of a monomeric chlorocobaloxime [ClCo(dmgH)2(4-PyCOOH)] with Zn(NO3)2·6H2O and Cd(OAc)2·2H2O in a methanol/DMF solvent mixture. Both complexes are fully characterized by UV-Visible, FT-IR, and NMR (1H and 13C{1H}) spectral studies. The solid-state structures are also determined by single-crystal X-ray crystallography. In complex 1, Zn (ii) metal ions reside within a four coordinated distorted tetrahedral geometry (ZnO4) formed by two oxygen atoms of isonicotinate connected to cobaloxime units and two oxygen atoms of DMF molecules. In complex 2, the Cd(ii) metal ion exhibited distorted octahedral geometry (CdO6), with two oxygen atoms of isonicotinate that connect to cobaloxime units, one DMF, and three water molecules. The Co(iii) metal center of cobaloxime units in both complexes 1 and 2 displayed distorted octahedral geometry with two dmgH units in the equatorial plane whereas chloride ion (Cl−) and the nitrogen atom of isonicotinate occupy the axial coordination sites. The redox behaviour of both complexes was studied by cyclic voltammetry at variable scan rates in deoxygenated DMF/H2O (95 : 5) solution using 0.1 M TBAPF6 as the supporting electrolyte and a glassy carbon (GC) electrode as the working electrode. Both complexes exhibited similar redox properties and two redox couples CoIII/II and CoII/CoI are observed in the reductive scan. Furthermore, complexes are investigated as electrocatalysts for proton reduction in the presence of acetic acid (AcOH) and complex 1 exhibited impressive electrocatalytic activity compared to complex 2 and monomer. The stability study indicated the retention of molecular structural integrity during HER electrocatalytic experiments.
  •  
2.
  • Albertsson, Ann-Christine, et al. (author)
  • Design and synthesis of different types of poly(lactic acid)/polylactide copolymers
  • 2022
  • In: Poly(lactic acid). - : Wiley. ; , s. 45-71
  • Book chapter (other academic/artistic)abstract
    • High molar mass poly(lactic acid) (PLA) is obtained by either the polycondensation of lactic acid or ring-opening polymerization (ROP) of the cyclic dimer 2,6-dimethyl-1,4-dioxane-2,5-dione, commonly referred to as dilactide or lactide (LA). This chapter describes preparation of polymers and copolymers of LAs with different structures, using polycondensation and ROP. Typical comonomers and polymers which are used for lactic acid or LA copolymerization include glycolic acid or glycolide, poly(ethylene glycol) or poly(ethylene oxide), and so on. PLAs having amino, carboxyl, or other functional groups are well reported in the literature. These functional groups can be utilized for chemical modification or as binding sites for biomolecules to impart selective binding and adhesion. PLA and its copolymers especially when used for biological applications, besides requirement of optimization of mechanical properties by engineering at the molecular level, also demands a fast degradation polymer rate.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-2 of 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view