SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Kurtén B.) srt2:(2015-2019)"

Search: WFRF:(Kurtén B.) > (2015-2019)

  • Result 1-2 of 2
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Lee, Ben H, et al. (author)
  • Highly functionalized organic nitrates in the southeast United States: Contribution to secondary organic aerosol and reactive nitrogen budgets.
  • 2016
  • In: Proceedings of the National Academy of Sciences of the United States of America. - : Proceedings of the National Academy of Sciences. - 1091-6490. ; 113:6, s. 1516-21
  • Journal article (peer-reviewed)abstract
    • Speciated particle-phase organic nitrates (pONs) were quantified using online chemical ionization MS during June and July of 2013 in rural Alabama as part of the Southern Oxidant and Aerosol Study. A large fraction of pONs is highly functionalized, possessing between six and eight oxygen atoms within each carbon number group, and is not the common first generation alkyl nitrates previously reported. Using calibrations for isoprene hydroxynitrates and the measured molecular compositions, we estimate that pONs account for 3% and 8% of total submicrometer organic aerosol mass, on average, during the day and night, respectively. Each of the isoprene- and monoterpenes-derived groups exhibited a strong diel trend consistent with the emission patterns of likely biogenic hydrocarbon precursors. An observationally constrained diel box model can replicate the observed pON assuming that pONs (i) are produced in the gas phase and rapidly establish gas-particle equilibrium and (ii) have a short particle-phase lifetime (∼2-4 h). Such dynamic behavior has significant implications for the production and phase partitioning of pONs, organic aerosol mass, and reactive nitrogen speciation in a forested environment.
  •  
2.
  • Lopez-Hilfiker, F D, et al. (author)
  • Molecular Composition and Volatility of Organic Aerosol in the Southeastern U.S.: Implications for IEPOX Derived SOA.
  • 2016
  • In: Environmental science & technology. - : American Chemical Society (ACS). - 1520-5851 .- 0013-936X. ; 50:5, s. 2200-2209
  • Journal article (peer-reviewed)abstract
    • We present measurements as part of the Southern Oxidant and Aerosol Study (SOAS) during which atmospheric aerosol particles were comprehensively characterized. We present results utilizing a Filter Inlet for Gases and AEROsol coupled to a chemical ionization mass spectrometer (CIMS). We focus on the volatility and composition of isoprene derived organic aerosol tracers and of the bulk organic aerosol. By utilizing the online volatility and molecular composition information provided by the FIGAERO-CIMS, we show that the vast majority of commonly reported molecular tracers of isoprene epoxydiol (IEPOX) derived secondary organic aerosol (SOA) is derived from thermal decomposition of accretion products or other low volatility organics having effective saturation vapor concentrations <10(-3) μg m(-3). In addition, while accounting for up to 30% of total submicrometer organic aerosol mass, the IEPOX-derived SOA has a higher volatility than the remaining bulk. That IEPOX-SOA, and more generally bulk organic aerosol in the Southeastern U.S. is comprised of effectively nonvolatile material has important implications for modeling SOA derived from isoprene, and for mechanistic interpretations of molecular tracer measurements. Our results show that partitioning theory performs well for 2-methyltetrols, once accretion product decomposition is taken into account. No significant partitioning delays due to aerosol phase or viscosity are observed, and no partitioning to particle-phase water or other unexplained mechanisms are needed to explain our results.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-2 of 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view