SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Landais A.) srt2:(2010-2014)"

Search: WFRF:(Landais A.) > (2010-2014)

  • Result 1-4 of 4
Sort/group result
   
EnumerationReferenceCoverFind
1.
  •  
2.
  • Dahl-Jensen, D., et al. (author)
  • Eemian interglacial reconstructed from a Greenland folded ice core
  • 2013
  • In: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 493:7433, s. 489-494
  • Journal article (peer-reviewed)abstract
    • Efforts to extract a Greenland ice core with a complete record of the Eemian interglacial (130,000 to 115,000 years ago) have until now been unsuccessful. The response of the Greenland ice sheet to the warmer-than-present climate of the Eemian has thus remained unclear. Here we present the new North Greenland Eemian Ice Drilling ('NEEM') ice core and show only a modest ice-sheet response to the strong warming in the early Eemian. We reconstructed the Eemian record from folded ice using globally homogeneous parameters known from dated Greenland and Antarctic ice-core records. On the basis of water stable isotopes, NEEM surface temperatures after the onset of the Eemian (126,000 years ago) peaked at 8 +/- 4 degrees Celsius above the mean of the past millennium, followed by a gradual cooling that was probably driven by the decreasing summer insolation. Between 128,000 and 122,000 years ago, the thickness of the northwest Greenland ice sheet decreased by 400 +/- 250 metres, reaching surface elevations 122,000 years ago of 130 +/- 300 metres lower than the present. Extensive surface melt occurred at the NEEM site during the Eemian, a phenomenon witnessed when melt layers formed again at NEEM during the exceptional heat of July 2012. With additional warming, surface melt might become more common in the future.
  •  
3.
  •  
4.
  • Masson-Delmotte, V., et al. (author)
  • Sensitivity of interglacial Greenland temperature and δ 18O : Ice core data, orbital and increased CO 2 climate simulations
  • 2011
  • In: Climate of the Past. - : Copernicus GmbH. - 1814-9324 .- 1814-9332. ; 7:3, s. 1041-1059
  • Journal article (peer-reviewed)abstract
    • The sensitivity of interglacial Greenland temperature to orbital and CO 2 forcing is investigated using the NorthGRIP ice core data and coupled ocean-atmosphere IPSL-CM4 model simulations. These simulations were conducted in response to different interglacial orbital configurations, and to increased CO 2 concentrations. These different forcings cause very distinct simulated seasonal and latitudinal temperature and water cycle changes, limiting the analogies between the last interglacial and future climate. However, the IPSL-CM4 model shows similar magnitudes of Arctic summer warming and climate feedbacks in response to 2 × CO 2 and orbital forcing of the last interglacial period (126 000 years ago). The IPSL-CM4 model produces a remarkably linear relationship between TOA incoming summer solar radiation and simulated changes in summer and annual mean central Greenland temperature. This contrasts with the stable isotope record from the Greenland ice cores, showing a multi-millennial lagged response to summer insolation. During the early part of interglacials, the observed lags may be explained by ice sheet-ocean feedbacks linked with changes in ice sheet elevation and the impact of meltwater on ocean circulation, as investigated with sensitivity studies. A quantitative comparison between ice core data and climate simulations requires stability of the stable isotope - temperature relationship to be explored. Atmospheric simulations including water stable isotopes have been conducted with the LMDZiso model under different boundary conditions. This set of simulations allows calculation of a temporal Greenland isotope-temperature slope (0.3-0.4% per °C) during warmer-than-present Arctic climates, in response to increased CO 2, increased ocean temperature and orbital forcing. This temporal slope appears half as large as the modern spatial gradient and is consistent with other ice core estimates. It may, however, be model-dependent, as indicated by preliminary comparison with other models. This suggests that further simulations and detailed inter-model comparisons are also likely to be of benefit. Comparisons with Greenland ice core stable isotope data reveals that IPSL-CM4/LMDZiso simulations strongly underestimate the amplitude of the ice core signal during the last interglacial, which could reach +8-10 °C at fixed-elevation. While the model-data mismatch may result from missing positive feedbacks (e.g. vegetation), it could also be explained by a reduced elevation of the central Greenland ice sheet surface by 300-400 m.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-4 of 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view