SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Lankhaar Boy 1991) srt2:(2024)"

Search: WFRF:(Lankhaar Boy 1991) > (2024)

  • Result 1-3 of 3
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Agafonova, I. I., et al. (author)
  • Hyperfine structure of the methanol molecule as traced by Class I methanol masers
  • 2024
  • In: Monthly Notices of the Royal Astronomical Society. - 0035-8711 .- 1365-2966. ; 533:2, s. 1714-1732
  • Journal article (peer-reviewed)abstract
    • We present results on simultaneous observations of Class I methanol masers at 25, 36, and 44 GHz towards 22 Galactic targets carried out with the Effelsberg 100-m telescope. The study investigates relations between the hyperfine (HF) structure of the torsion–rotation transitions in CH3OH and maser activity. By analysing the radial velocity shifts between different maser lines together with the patterns of the HF structure based on laboratory measurements and quantum-chemical calculations, we find that in any source only one specific HF transition forms the maser emission and that this transition changes from source to source. The physical conditions leading to this selective behaviour are still unclear. Using accurate laboratory rest frequencies for the 25 GHz transitions, we have refined the centre frequencies for the HF multiplets at 36, 44, and 95 GHz: f36 = (36169.2488 ± 0.0002stat ± 0.0004sys) MHz. f44 = (44069.4176 ± 0.0002stat ± 0.0004sys) MHz, and f95 = (95169.4414 ± 0.0003stat ± 0.0004sys) MHz. Comparison with previous observations of 44 GHz masers performed 6–10 yr ago with a Korean 21-m Korean Very Long Baseline Interferometry Network telescope towards the same targets confirms the kinematic stability of Class I maser line profiles during this time interval and reveals a systematic radial velocity shift of 0.013 ± 0.005 km s−1 between the two telescopes.
  •  
2.
  • Lankhaar, Boy, 1991, et al. (author)
  • Maser polarization through anisotropic pumping
  • 2024
  • In: Astronomy and Astrophysics. - 0004-6361 .- 1432-0746. ; 683
  • Journal article (peer-reviewed)abstract
    • Context. Polarized emission from masers is an excellent tool to study magnetic fields in maser sources. The linear polarization of the majority of masers is understood as an interplay of maser saturation and anisotropic pumping. However, for the latter mechanism, no quantitative modeling has been presented yet. Aims. We aim to construct a comprehensive model of maser polarization, including quantitative modeling of both anisotropic pumping and the effects of maser saturation on the polarization of masers. Methods. We extended regular (isotropic) maser excitation modeling with a dimension that describes the molecular population alignments, as well as including the linear polarization dimension to the radiative transfer. The results of the excitation analysis yielded the anisotropic pumping and decay parameters, which were subsequently used in one-dimensional proper maser polarization radiative transfer modeling. Results. We present the anisotropic pumping parameters for a variety of transitions from class I CH3OH masers, H2O masers, and SiO masers. SiO masers are highly anisotropically pumped due to them occurring in the vicinity of a late-type star, which irradiates the maser region with a strong directional radiation field. Class I CH3OH masers and H2O masers occur in association with shocks, and they are modestly anisotropically pumped due to the anisotropy of the excitation region. Conclusions. Our modeling constitutes the first quantitative constraints on the anisotropic pumping of masers. We find that anisotropic pumping can explain the high polarization yields of SiO masers, as well as the modest polarization of unsaturated class I CH3OH masers. The common 22 GHz H2O maser has a relatively weak anisotropic pumping; in contrast, we predict that the 183 GHz H2O maser is strongly anisotropically pumped. Finally, we outline a mechanism through which non-Zeeman circular polarization is produced, when the magnetic field changes direction along the propagation through an anisotropically pumped maser.
  •  
3.
  • Vlemmings, Wouter, 1974, et al. (author)
  • Molecular line polarisation from the circumstellar envelopes of asymptotic giant branch stars
  • 2024
  • In: Astronomy and Astrophysics. - 0004-6361 .- 1432-0746. ; 686
  • Journal article (peer-reviewed)abstract
    • Context. Polarisation observations of masers in the circumstellar envelopes (CSEs) around asymptotic giant branch (AGB) stars have revealed strong magnetic fields. However, masers probe only specific lines of sight through the CSE. Non-masing molecular line polarisation observations can more directly reveal the large-scale magnetic field morphology and hence probe the effect of the magnetic field on AGB mass loss and the shaping of the AGB wind. Aims. Observations and models of CSE molecular line polarisation can now be used to describe the magnetic field morphology and estimate its strength throughout the entire CSE. Methods. We used observations taken with the Atacama Large Millimeter/submillimeter Array (ALMA) of molecular line polarisation in the envelope of two AGB stars: CW Leo and R Leo. We modelled the observations using the multi-dimensional polarised radiative transfer tool PORTAL. Results. We found linearly polarised emission, with maximum fractional polarisation on the order of a few percent, in several molecular lines towards both stars. Towards R Leo, we also found a high level of linear polarisation (up to a ∼ 35%) for one of the SiO va=1 maser transitions. We can explain the observed differences in polarisation structure between the different molecular lines by alignment of the molecules through a combination of the Goldreich-Kylafis effect and radiative alignment effects. We specifically show that the polarisation of CO traces the morphology of the magnetic field. Competition between the alignment mechanisms allowed us to describe the behaviour of the magnetic field strength as a function of the radius throughout the circumstellar envelope of CW Leo. The magnetic field strength derived using this method is inconsistent with the magnetic field strength derived using a structure-function analysis of the CO polarisation and the strength previously derived using CN Zeeman observations. In contrast with CW Leo, the magnetic field in the outer envelope of R Leo appears to be advected outwards by the stellar wind. Conclusions. The ALMA observations and our polarised radiative transfer models show the power of using multiple molecular species to trace the magnetic field behaviour throughout the circumstellar envelope. While the observations appear to confirm the existence of a large-scale magnetic field, further observations and modelling are needed to understand the apparent inconsistency of the magnetic field strength derived with different methods in the envelope of CW Leo.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-3 of 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view