SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Larsen Filip) srt2:(2010-2014)"

Search: WFRF:(Larsen Filip) > (2010-2014)

  • Result 1-10 of 17
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Carlström, Mattias, et al. (author)
  • Dietary inorganic nitrate reverses features of metabolic syndrome in endothelial nitric oxide synthase-deficient mice
  • 2010
  • In: Proceedings of the National Academy of Sciences of the United States of America. - : Proceedings of the National Academy of Sciences. - 0027-8424 .- 1091-6490. ; 107:41, s. 17716-17720
  • Journal article (peer-reviewed)abstract
    • The metabolic syndrome is a clustering of risk factors of metabolic origin that increase the risk for cardiovascular disease and type 2 diabetes. A proposed central event in metabolic syndrome is a decrease in the amount of bioavailable nitric oxide (NO) from endothelial NO synthase (eNOS). Recently, an alternative pathway for NO formation in mammals was described where inorganic nitrate, a supposedly inert NO oxidation product and unwanted dietary constituent, is serially reduced to nitrite and then NO and other bioactive nitrogen oxides. Here we show that several features of metabolic syndrome that develop in eNOS-deficient mice can be reversed by dietary supplementation with sodium nitrate, in amounts similar to those derived from eNOS under normal conditions. In humans, this dose corresponds to a rich intake of vegetables, the dominant dietary nitrate source. Nitrate administration increased tissue and plasma levels of bioactive nitrogen oxides. Moreover, chronic nitrate treatment reduced visceral fat accumulation and circulating levels of triglycerides and reversed the prediabetic phenotype in these animals. In rats, chronic nitrate treatment reduced blood pressure and this effect was also present during NOS inhibition. Our results show that dietary nitrate fuels a nitrate-nitrite-NO pathway that can partly compensate for disturbances in endogenous NO generation from eNOS. These findings may have implications for novel nutrition-based preventive and therapeutic strategies against cardiovascular disease and type 2 diabetes.
  •  
2.
  •  
3.
  • Hahn, Robert, et al. (author)
  • A simple intravenous glucose tolerance test for assessment of insulin sensitivity
  • 2011
  • In: Theoretical Biology and Medical Modelling. - : BioMed Central. - 1742-4682. ; 8:12
  • Journal article (peer-reviewed)abstract
    • BackgroundThe aim of the study was to find a simple intravenous glucose tolerance test (IVGTT) that can be used to estimate insulin sensitivity.MethodsIn 20 healthy volunteers aged between 18 and 51 years (mean, 28) comparisons were made between kinetic parameters derived from a 12-sample, 75-min IVGTT and the Mbw (glucose uptake) obtained during a hyperinsulinemic euglycemic glucose clamp. Plasma glucose was used to calculate the volume of distribution (Vd) and the clearance (CL) of the injected glucose bolus. The plasma insulin response was quantified by the area under the curve (AUCins). Uptake of glucose during the clamp was corrected for body weight (Mbw).ResultsThere was a 7-fold variation in Mbw. Algorithms based on the slope of the glucose-elimination curve (CL/Vd) in combination with AUCins obtained during the IVGTT showed statistically significant correlations with Mbw, the linearity being r2 = 0.63-0.83. The best algorithms were associated with a 25-75th prediction error ranging from -10% to +10%. Sampling could be shortened to 30-40 min without loss of linearity or precision.ConclusionSimple measures of glucose and insulin kinetics during an IVGTT can predict between 2/3 and 4/5 of the insulin sensitivity.
  •  
4.
  • Larsen, Filip, 1977-, et al. (author)
  • Dietary inorganic nitrate improves mitochondrial efficiency in humans.
  • 2011
  • In: Cell Metabolism. - : Elsevier BV. - 1550-4131 .- 1932-7420. ; 13:2, s. 149-159
  • Journal article (peer-reviewed)abstract
    • Nitrate, an inorganic anion abundant in vegetables, is converted in vivo to bioactive nitrogen oxides including NO. We recently demonstrated that dietary nitrate reduces oxygen cost during physical exercise, but the mechanism remains unknown. In a double-blind crossover trial we studied the effects of a dietary intervention with inorganic nitrate on basal mitochondrial function and whole-body oxygen consumption in healthy volunteers. Skeletal muscle mitochondria harvested after nitrate supplementation displayed an improvement in oxidative phosphorylation efficiency (P/O ratio) and a decrease in state 4 respiration with and without atractyloside and respiration without adenylates. The improved mitochondrial P/O ratio correlated to the reduction in oxygen cost during exercise. Mechanistically, nitrate reduced the expression of ATP/ADP translocase, a protein involved in proton conductance. We conclude that dietary nitrate has profound effects on basal mitochondrial function. These findings may have implications for exercise physiology- and lifestyle-related disorders that involve dysfunctional mitochondria.
  •  
5.
  • Larsen, Filip J, et al. (author)
  • Cardiorespiratory fitness predicts insulin action and secretion in healthy individuals.
  • 2012
  • In: Metabolism. - : Elsevier BV. - 0026-0495 .- 1532-8600. ; 61:1, s. 12-6
  • Journal article (peer-reviewed)abstract
    • Long-term cardiorespiratory fitness (CRF) and the development of type 2 diabetes mellitus are inversely correlated. Here, we examined the relationships between peak oxygen uptake (VO(2)peak), on the one hand, and glucose infusion rate at rest (GIR(rest)) and during exercise (GIR(exercise)), as well as insulin secretion (both the early and late phases of response [area under the curve {AUC}(insulin)]), on the other. Eight male and 4 female healthy, lean, nonsmoking volunteers were recruited. The VO(2)peak was measured during graded exercise on a cycle ergometer until exhaustion was reached. The GIR(rest) and GIR(exercise) were determined using a euglycemic-hyperinsulinemic clamp, and insulin secretion at rest was evaluated with an intravenous glucose tolerance test. The VO(2)peak correlated positively to GIR(rest) (r = 0.81, P = .001) and GIR(exercise) (r = 0.87, P < .001) and negatively to AUC(insulin) (r = -0.64, P = .03). The respiratory exchange ratio (RER) during insulin infusion was positively correlated to GIR(rest) (r = 0.83, P < .001) and GIR(exercise) (r = 0.86, P < .01) and negatively correlated to both the early insulin response (r = -0.86, P < .0001) and AUC(insulin) (r = -0.87, P = .001). The VO(2)peak accounted for 45% of the variability in RER (R(2) = 0.45, P = .035). In this healthy population, CRF and RER were highly correlated to insulin sensitivity and secretion, as well as to the ability to alter the substrate being oxidized during exercise. These findings highlight the importance of good CRF to maintaining normal insulin action.
  •  
6.
  • Larsen, Filip J. (author)
  • Dietary inorganic nitrate : role in exercise physiology, cardiovascular and metabolic regulation
  • 2011
  • Doctoral thesis (other academic/artistic)abstract
    • Nitric oxide (NO) is a ubiquitous signaling molecule with a vast number of tasks in the body, including regulation of cardiovascular and metabolic function. A decreased bioavailability of NO is a central event in disorders such as hypertension and metabolic syndrome. NO is also important in the regulation of blood flow and metabolism during exercise. The production of NO has previously been thought to be under the exclusive control of the nitric oxide synthases (NOS) but this view is now being seriously challenged. Recent lines of research suggest the existence of an NO-synthase independent pathway in which the supposedly inert NO oxidation products nitrate (NO3-) and nitrite (NO2-) can be reduced back to NO in blood and tissues. An important additional source of nitrate is our everyday diet and certain vegetables are particularly rich in this anion. In this thesis the possibility that dietary derived nitrate is metabolized in vivo to form reactive nitrogen oxides with NO-like bioactivity has been explored. It is shown that nitrate in amounts easily achieved via the diet, increases the systemic levels of nitrite and reduces blood pressure in healthy humans. Moreover, nitrate reduces whole body oxygen cost during submaximal and maximal exercise; a surprising effect involving improvement in mitochondrial efficiency and reduced expression of specific mitochondrial proteins regulating proton conductance. Alterations in the mitochondrial affinity for oxygen can explain this reduction in both submaximal and maximal oxygen consumption and predicts basal metabolic rate in humans. Finally, in mice lacking endothelial NO synthase, dietary supplementation with nitrate could reverse several features of the metabolic syndrome that develop in these animals. These studies demonstrate that dietary nitrate can fuel a nitrate-nitrite-NO pathway with important implications for cardiovascular and metabolic functions in health and disease.
  •  
7.
  • Larsen, Filip J, et al. (author)
  • Dietary nitrate reduces maximal oxygen consumption while maintaining work performance in maximal exercise.
  • 2010
  • In: Free Radical Biology & Medicine. - : Elsevier BV. - 0891-5849 .- 1873-4596. ; 48:2, s. 342-7
  • Journal article (peer-reviewed)abstract
    • The anion nitrate-abundant in our diet-has recently emerged as a major pool of nitric oxide (NO) synthase-independent NO production. Nitrate is reduced stepwise in vivo to nitrite and then NO and possibly other bioactive nitrogen oxides. This reductive pathway is enhanced during low oxygen tension and acidosis. A recent study shows a reduction in oxygen consumption during submaximal exercise attributable to dietary nitrate. We went on to study the effects of dietary nitrate on various physiological and biochemical parameters during maximal exercise. Nine healthy, nonsmoking volunteers (age 30+/-2.3 years, VO(2max) 3.72+/-0.33 L/min) participated in this study, which had a randomized, double-blind crossover design. Subjects received dietary supplementation with sodium nitrate (0.1 mmol/kg/day) or placebo (NaCl) for 2 days before the test. This dose corresponds to the amount found in 100-300 g of a nitrate-rich vegetable such as spinach or beetroot. The maximal exercise tests consisted of an incremental exercise to exhaustion with combined arm and leg cranking on two separate ergometers. Dietary nitrate reduced VO(2max) from 3.72+/-0.33 to 3.62+/-0.31 L/min, P<0.05. Despite the reduction in VO(2max) the time to exhaustion trended to an increase after nitrate supplementation (524+/-31 vs 563+/-30 s, P=0.13). There was a correlation between the change in time to exhaustion and the change in VO(2max) (R(2)=0.47, P=0.04). A moderate dietary dose of nitrate significantly reduces VO(2max) during maximal exercise using a large active muscle mass. This reduction occurred with a trend toward increased time to exhaustion implying that two separate mechanisms are involved: one that reduces VO(2max) and another that improves the energetic function of the working muscles.
  •  
8.
  • Larsen, Filip J, et al. (author)
  • Dietary nitrate reduces resting metabolic rate : a randomized, crossover study in humans.
  • 2014
  • In: American Journal of Clinical Nutrition. - : Elsevier BV. - 0002-9165 .- 1938-3207. ; 99:4, s. 843-50
  • Journal article (peer-reviewed)abstract
    • BACKGROUND: Nitrate, which is an inorganic anion abundant in vegetables, increases the efficiency of isolated human mitochondria. Such an effect might be reflected in changes in the resting metabolic rate (RMR) and formation of reactive oxygen species. The bioactivation of nitrate involves its active accumulation in saliva followed by a sequential reduction to nitrite, nitric oxide, and other reactive nitrogen species.OBJECTIVE: We studied effects of inorganic nitrate, in amounts that represented a diet rich in vegetables, on the RMR in healthy volunteers.DESIGN: In a randomized, double-blind, crossover study, we measured the RMR by using indirect calorimetry in 13 healthy volunteers after a 3-d dietary intervention with sodium nitrate (NaNO3) or a placebo (NaCl). The nitrate dose (0.1 mmol · kg(-1) · d(-1)) corresponded to the amount in 200-300 g spinach, beetroot, lettuce, or other vegetable that was rich in nitrate. Effects of direct nitrite exposure on cell respiration were studied in cultured human primary myotubes.RESULTS: The RMR was 4.2% lower after nitrate compared with placebo administration, and the change correlated strongly to the degree of nitrate accumulation in saliva (r(2) = 0.71). The thyroid hormone status, insulin sensitivity, glucose uptake, plasma concentration of isoprostanes, and total antioxidant capacity were unaffected by nitrate. The administration of nitrite to human primary myotubes acutely inhibited respiration.CONCLUSIONS: Dietary inorganic nitrate reduces the RMR. This effect may have implications for the regulation of metabolic function in health and disease.
  •  
9.
  • Larsen, Filip, et al. (author)
  • Mitochondrial oxygen affinity predicts basal metabolic rate in humans
  • 2011
  • In: The FASEB Journal. - : Wiley. - 0892-6638 .- 1530-6860. ; 25:8, s. 2843-52
  • Journal article (peer-reviewed)abstract
    • The basal metabolic rate (BMR) is referred to as the minimal rate of metabolism required to support basic body functions. It is well known that individual BMR varies greatly, even when correcting for body weight, fat content, and thyroid hormone levels, but the mechanistic determinants of this phenomenon remain unknown. Here, we show in humans that mass-related BMR correlates strongly to the mitochondrial oxygen affinity (p50(mito); R(2)=0.66, P=0.0004) measured in isolated skeletal muscle mitochondria. A similar relationship was found for oxygen affinity and efficiency during constant-load submaximal exercise (R(2)=0.46, P=0.007). In contrast, BMR did not correlate to overall mitochondrial density or to proton leak. Mechanistically, part of the p50(mito) seems to be controlled by the excess of cytochrome c oxidase (COX) protein and activity relative to other mitochondrial proteins. This is illustrated by the 5-fold increase in p50(mito) after partial cyanide inhibition of COX at doses that do not affect maximal mitochondrial electron flux through the ETS. These data suggest that the interindividual variation in BMR in humans is primarily explained by differences in mitochondrial oxygen affinity. The implications of these findings are discussed in terms of a trade-off between aerobic efficiency and power.
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-10 of 17

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view