SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Lee Minho) srt2:(2020)"

Search: WFRF:(Lee Minho) > (2020)

  • Result 1-2 of 2
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Doi, Yasuo, et al. (author)
  • The JCMT BISTRO Survey: Magnetic Fields Associated with a Network of Filaments in NGC 1333
  • 2020
  • In: Astrophysical Journal. - : American Astronomical Society. - 1538-4357 .- 0004-637X. ; 899:1
  • Journal article (peer-reviewed)abstract
    • We present new observations of the active star formation region NGC 1333 in the Perseus molecular cloud complex from the James Clerk Maxwell Telescope B-Fields In Star-forming Region Observations (BISTRO) survey with the POL-2 instrument. The BISTRO data cover the entire NGC 1333 complex (∼1.5 pc ? 2 pc) at 0.02 pc resolution and spatially resolve the polarized emission from individual filamentary structures for the first time. The inferred magnetic field structure is complex as a whole, with each individual filament aligned at different position angles relative to the local field orientation. We combine the BISTRO data with low- and high- resolution data derived from Planck and interferometers to study the multiscale magnetic field structure in this region. The magnetic field morphology drastically changes below a scale of ∼1 pc and remains continuous from the scales of filaments (∼0.1 pc) to that of protostellar envelopes (∼0.005 pc or ∼1000 au). Finally, we construct simple models in which we assume that the magnetic field is always perpendicular to the long axis of the filaments. We demonstrate that the observed variation of the relative orientation between the filament axes and the magnetic field angles are well reproduced by this model, taking into account the projection effects of the magnetic field and filaments relative to the plane of the sky. These projection effects may explain the apparent complexity of the magnetic field structure observed at the resolution of BISTRO data toward the filament network.
  •  
2.
  • Lee, Minho, et al. (author)
  • Thermal-assisted photo-annealed TiO2 thin films for perovskite solar cells fabricated under ambient air
  • 2020
  • In: Applied Surface Science. - : ELSEVIER. - 0169-4332 .- 1873-5584. ; 530
  • Journal article (peer-reviewed)abstract
    • We report herein a facile process for the fabrication of amorphous TiO2 thin films under ambient atmosphere using thermal-assisted UV-annealing (similar to 125 degrees C). The TiO2 films were prepared via spin-coating titanium diisopropoxide bis(acetylacetonate) precursor and sequential photo-annealing at various temperatures. Additional soft annealing during the UV-annealing altered the surface chemical states and electrical band structures of the amorphous TiO2 films. The UV-annealing at room temperature leads to a higher conduction band minimum level of the film and a smaller amount of hydroxyl group at the film surface, compared to the thermal-assisted (100-250 degrees C) UV-annealing or the thermal-only annealing (500 degrees C). Effects of the temperature during the UV-annealing process on photovoltaic properties were investigated by fabricating planar heterojunction perovskite cells with methylammonium lead triiodide under ambient atmosphere. At higher temperature of 100-150 degrees C, compared to room temperature, fill factor and power conversion efficiency were enhanced, and hysteresis in current-voltage curves were reduced. Impedance analysis demonstrates that the capacitance is significantly reduced, leading to suppressed hysteresis of the perovskite solar cells. Finally, we achieved a power-conversion efficiency of 20.36% (for the reverse scan) and a stabilized power output of 18.57% from a 125 degrees C -photo-annealed TiO2-based device.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-2 of 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view