SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Lennernäs Hans Professor) srt2:(2015-2019)"

Search: WFRF:(Lennernäs Hans Professor) > (2015-2019)

  • Result 1-5 of 5
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Dubbelboer, Ilse R (author)
  • Biopharmaceutical investigations of doxorubicin formulations used in liver cancer treatment : Studies in healthy pigs and liver cancer patients, combined with pharmacokinetic and biopharmaceutical modelling
  • 2017
  • Doctoral thesis (other academic/artistic)abstract
    • There are currently two types of drug formulation in clinical use in the locoregional treatment of intermediate hepatocellular carcinoma (HCC). In the emulsion LIPDOX, the cytostatic agent doxorubicin (DOX) is dissolved in the aqueous phase, which is emulsified with the oily contrast agent Lipiodol® (LIP). In the microparticular system DEBDOX, DOX is loaded into the drug-eluting entity DC Bead™.The overall aim of the thesis was to improve pharmaceutical understanding of the LIPDOX and DEBDOX formulations, in order to facilitate the future development of novel drug delivery systems. In vivo release of DOX from the formulations and the disposition of DOX and its active metabolite doxorubicinol (DOXol) were assessed in an advanced multisampling-site acute healthy pig model and in patients with HCC. The release of DOX and disposition of DOX and DOXol where further analysed using physiologically based pharmacokinetic (PBPK) and biopharmaceutical (PBBP) modelling. The combination of in vivo investigations and in silico modelling could provide unique insight into the mechanisms behind drug release and disposition.The in vivo release of DOX from LIPDOX is not extended and controlled, as it is from DEBDOX. With both formulations, DOX is released as a burst during the early phase of administration. The in vivo release of DOX from LIPDOX was faster than from DEBDOX in both pigs and patients. The release from DEBDOX was slow and possibly incomplete. The in vivo release of DOX from LIPDOX and DEBDOX could be described by using the PBBP model in combination with in vitro release profiles.The disposition of DOX and DOXol was modelled using a semi-PBPK model containing intracellular binding sites. The contrast agent Lipiodol® did not affect the hepatobiliary disposition of DOX in the pig model. The control substance used in this study, cyclosporine A, inhibited the biliary excretion of DOX and DOXol but did not alter metabolism in healthy pigs. The disposition of DOX is similar in healthy pigs and humans, which was shown by the ease of translation of the semi-PBPK pig model to the human PBBP model.
  •  
2.
  • Lilienberg, Elsa, 1984- (author)
  • Biopharmaceutical Evaluation of Intra-arterial Drug-Delivery Systems for Liver Cancer : Investigations in healthy pigs and liver cancer patients
  • 2015
  • Doctoral thesis (other academic/artistic)abstract
    • There are currently two types of intra-arterial drug-delivery system (DDS) in clinical use in the palliative treatment of primary liver cancer. The chemotherapeutic drug doxorubicin (DOX) can be formulated into a drug-in-lipiodol emulsion (LIPDOX) or a microparticulate drug-eluting bead system (DEBDOX). To facilitate development of future DDSs, we need to understand the release and local distribution of drug from these DDSs into the complex, in vivo, pathological environment.The overall aim of this project was to assess and improve understanding of the in vivo release of DOX from LIPDOX and DEBDOX and its local disposition in the liver. These processes were investigated in detail in a multisampling-site, healthy pig model and in human patients with liver cancer. The mechanisms involved in DOX disposition were studied by examining potential interactions between DOX and lipiodol and/or cyclosporine A (CsA) in pigs.  In this project, the main elimination pathway for DOX and its primary metabolite doxorubicinol (DOXol) was via bile; their extensive canalicular carrier-mediated transport (e.g. ATP-binding cassette transporters ABCB1, ABCC1, ABCC2 and ABCG2) was inhibited by CsA. CsA had no effect on the carbonyl and aldo-keto reductases responsible for the metabolism of DOX into DOXol. LIPDOX released DOX more rapidly and to a greater extent into the circulation than DEBDOX, which had only released 15% of the dose in patients after 24 hrs. The systemic exposure to DOX was lower for DEBDOX than for LIPDOX. Greater fractions of DOXol were formed in blood and bile with LIPDOX than with DEBDOX. This may have been because DOX was more widely distributed into regions with increased metabolic capacity or because of increased intracellular uptake when DOX was delivered in LIPDOX. The excipient lipiodol in the LIPDOX formulation did not interact with transporters, enzymes or membranes that would explain the increased cellular uptake of DOX.In conclusion, the release of DOX from DEBDOX is more controlled in vivo than that from LIPDOX, indicating that DEBDOX is a more robust pharmaceutical product. The formulations for future optimized DDSs should therefore be more similar to DEBDOX than to LIPDOX. 
  •  
3.
  • Ahnfelt, Emelie (author)
  • In vitro evaluation of formulations used in the treatment of hepatocellular carcinoma
  • 2018
  • Doctoral thesis (other academic/artistic)abstract
    • Hepatocellular carcinoma (HCC) causes ~ 600,000 deaths annually, making it the second most deadly cancer form. HCC is classified into five stages and for the intermediate HCC treatment, the two most commonly used drug delivery systems (DDSs) are lipiodol-based emulsions and drug-eluting beads. The aims of this thesis were to develop in vitro methods suitable for studying these DDSs. It is important to investigate the release mechanisms and release rates with relevant in vitro methods, as this can improve the understanding of the in vivo performance. Miniaturized in vitro methods with sample reservoirs separated from the release medium by a diffusion barrier were developed and shown to be suitable for studying drug release from particle DDSs (Paper I). In Paper II these methods were further developed and used to study the release of doxorubicin (DOX) from the clinically used drug-eluting beads. DOX release rates were affected by the method set-up and the characteristics of the release medium. The choice of method and volume of release medium could improve the in vivo-likeness of the in vitro release profiles. Applied theoretical models suggested a film-controlled type of DOX release mechanism from the beads when self-aggregation, DOX-bead interaction, and DOX deprotonation were taken into account.A micropipette-assisted microscopy method was used to further improve the understanding of the release mechanism of amphiphilic molecules from the beads (Paper III). A detailed analysis suggested an internal depletion-layer model dependent on molecular self-aggregation for the release. It was further suggested that a simple ion-exchange mechanism is unrealistic in physiological conditions.The important pharmaceutical factors for the emulsion-based formulations were investigated in Paper IV. DOX solubility, lipid phase distribution, and emulsion stability increased when the contrast agent iohexol was added. Also, an increase in release half-life (h) was observed from emulsions with iohexol.The in vitro methods and theoretical models presented in this thesis can be used during development and optimization of future DDSs.
  •  
4.
  • Dahlgren, David (author)
  • Biopharmaceutical aspects of intestinal drug absorption : Regional permeability and absorption-modifying excipients
  • 2018
  • Doctoral thesis (other academic/artistic)abstract
    • Before an orally administered drug reaches the systemic circulation, it has to dissolve in the intestinal fluids, permeate across the intestinal epithelial cell barrier, and pass through the liver. The permeation rate of drug compounds can be low and show regional differences.The thesis had two general aims. The first of these was, to determine and compare regional intestinal permeability values of model compounds in human and dog. The second was to understand the possible effects of absorption-modifying pharmaceutical excipients (AMEs) on the intestinal permeability of the model compounds. The usefulness of several preclinical animal models for predicting the impact of regional intestinal permeability and AMEs in human was also investigated.There was a good correlation between human and dog permeability values in the small intestines for the model compounds. The colon in dog was substantially more permeable than the human colon to the low permeability drug, atenolol. This difference in colonic permeability may have implications for the use of dog as a model species for prediction of human intestinal drug absorption.There were no effects of AMEs on the intestinal permeability of any of the high permeability compounds, in any animal model. In the rat single-pass intestinal perfusion model, there was a substantial increase in permeability of all low permeability drugs, induced by two AMEs, chitosan and SDS. This AME-induced increase was substantially lower in the more in vivo relevant rat and dog intraintestinal bolus models. A shorter AME exposure-time in the rat single-pass intestinal perfusion model (15 vs. 75 min) could, however, predict the result from the bolus studies in rat and dog. This illustrates the impact of intestinal transit and mucosal exposure time on AME effects in vivo. The intestinal luminal conditions and enteric neural activity also had an impact on determinations of drug permeability in the rat single-pass intestinal perfusion model, which can have implications for its in vivo relevance.In summary, this thesis used multiple in vivo models to evaluate the impact of several biopharmaceutical processes on intestinal drug absorption. This has led to an increased understanding of these absorption mechanisms.
  •  
5.
  • Roos, Carl (author)
  • Intestinal absorption of drugs : The impact of regional permeability, nanoparticles, and absorption-modifying excipients
  • 2018
  • Doctoral thesis (other academic/artistic)abstract
    • For successful delivery of orally given drug products, the drug compounds must have adequate solubility and permeability in the human gastrointestinal tract. The permeability of a compound is determined by its size and lipophilicity, and is usually evaluated in various pre-clinical models, including rat models.This thesis had three major aims: 1) investigate regional permeability in human and rat intestines and evaluate two different rat models, 2) investigate the mechanisms behind absorption in nanosuspensions, and 3) investigate the effect of food on the absorption of drug molecules in solutions and suspensions, and also food’s effect on absorption modifying excipients (AMEs).Effective human permeability values obtained using regional intra-intestinal dosing and a deconvolution method agreed with values established by perfusion from the jejunum, demonstrating the accuracy and validity of the intra-intestinal bolus-dosing approach. Single-pass intestinal perfusion (SPIP) in rats showed better correlation with human effective permeability than the Ussing chamber, and was therefore deemed the better model for predicting drug permeability in humans.Absorption of microsuspensions and nanosuspension was investigated using rat SPIP, which showed that microsuspensions are subject to pronounced food effects, probably by partitioning of drug into the colloidal structures formed by bile acids, lecithin, and fatty acids. Nanosuspensions were less affected by food, which was attributed to fewer available nanoparticles in the fed state due to partitioning into colloidal structures, and because nanoparticles are able to cross the aqueous boundary layer on their own, increasing the concentration of drug adjacent to the epithelial membrane.AMEs had less effect in the fed state than the fasted state when investigated using SPIP. This difference may be caused by AMEs partitioning into luminal colloidal structures, decreasing the AMEs’ effects on the intestinal membrane. It thus seems that AMEs as well as drug compounds are subject to food-drug interactions, which may either increase or decrease the effect or absorption, something that needs to be considered during development of new drug products. In summary, this thesis has improved the knowledge of pre-clinical absorption models and the understanding of several biopharmaceutical mechanisms important for drug absorption.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-5 of 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view