SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Lenton Timothy) srt2:(2020-2024)"

Search: WFRF:(Lenton Timothy) > (2020-2024)

  • Result 1-10 of 12
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Abrams, Jesse F., et al. (author)
  • Committed Global Warming Risks Triggering Multiple Climate Tipping Points
  • 2023
  • In: Earth's Future. - 2328-4277. ; 11:11
  • Journal article (peer-reviewed)abstract
    • Many scenarios for limiting global warming to 1.5(degrees)C assume planetary-scale carbon dioxide removal sufficient to exceed anthropogenic emissions, resulting in radiative forcing falling and temperatures stabilizing. However, such removal technology may prove unfeasible for technical, environmental, political, or economic reasons, resulting in continuing greenhouse gas emissions from hard-to-mitigate sectors. This may lead to constant concentration scenarios, where net anthropogenic emissions remain non-zero but small, and are roughly balanced by natural carbon sinks. Such a situation would keep atmospheric radiative forcing roughly constant. Fixed radiative forcing creates an equilibrium committed warming, captured in the concept of equilibrium climate sensitivity. This scenario is rarely analyzed as a potential extension to transient climate scenarios. Here, we aim to understand the planetary response to such fixed concentration commitments, with an emphasis on assessing the resulting likelihood of exceeding temperature thresholds that trigger climate tipping points. We explore transients followed by respective equilibrium committed warming initiated under low to high emission scenarios. We find that the likelihood of crossing the 1.5(degrees)C threshold and the 2.0(degrees)C threshold is 83% and 55%, respectively, if today's radiative forcing is maintained until achieving equilibrium global warming. Under the scenario that best matches current national commitments (RCP4.5), we estimate that in the transient stage, two tipping points will be crossed. If radiative forcing is then held fixed after the year 2100, a further six tipping point thresholds are crossed. Achieving a trajectory similar to RCP2.6 requires reaching net-zero emissions rapidly, which would greatly reduce the likelihood of tipping events.
  •  
2.
  • Armstrong McKay, David I., et al. (author)
  • Exceeding 1.5°C global warming could trigger multiple climate tipping points
  • 2022
  • In: Science. - : American Association for the Advancement of Science (AAAS). - 0036-8075 .- 1095-9203. ; 377:6611
  • Journal article (peer-reviewed)abstract
    • Climate tipping points occur when change in a part of the climate system becomes self-perpetuating beyond a warming threshold, leading to substantial Earth system impacts. Synthesizing paleoclimate, observational, and model-based studies, we provide a revised shortlist of global “core” tipping elements and regional “impact” tipping elements and their temperature thresholds. Current global warming of ~1.1°C above preindustrial temperatures already lies within the lower end of some tipping point uncertainty ranges. Several tipping points may be triggered in the Paris Agreement range of 1.5 to <2°C global warming, with many more likely at the 2 to 3°C of warming expected on current policy trajectories. This strengthens the evidence base for urgent action to mitigate climate change and to develop improved tipping point risk assessment, early warning capability, and adaptation strategies. 
  •  
3.
  • Brovkin, Victor, et al. (author)
  • Past abrupt changes, tipping points and cascading impacts in the Earth system
  • 2021
  • In: Nature Geoscience. - : Springer Science and Business Media LLC. - 1752-0894 .- 1752-0908. ; 14:8, s. 550-558
  • Research review (peer-reviewed)abstract
    • A synthesis of intervals of rapid climatic change evident in the geological record reveals some of the Earth system processes and tipping points that could lead to similar events in the future. The geological record shows that abrupt changes in the Earth system can occur on timescales short enough to challenge the capacity of human societies to adapt to environmental pressures. In many cases, abrupt changes arise from slow changes in one component of the Earth system that eventually pass a critical threshold, or tipping point, after which impacts cascade through coupled climate-ecological-social systems. The chance of detecting abrupt changes and tipping points increases with the length of observations. The geological record provides the only long-term information we have on the conditions and processes that can drive physical, ecological and social systems into new states or organizational structures that may be irreversible within human time frames. Here, we use well-documented abrupt changes of the past 30 kyr to illustrate how their impacts cascade through the Earth system. We review useful indicators of upcoming abrupt changes, or early warning signals, and provide a perspective on the contributions of palaeoclimate science to the understanding of abrupt changes in the Earth system.
  •  
4.
  • Gupta, Joyeeta, et al. (author)
  • Earth system justice needed to identify and live within Earth system boundaries
  • 2023
  • In: Nature Sustainability. - : Springer Science and Business Media LLC. - 2398-9629. ; 6:6, s. 630-638
  • Journal article (peer-reviewed)abstract
    • Living within planetary limits requires attention to justice as biophysical boundaries are not inherently just. Through collaboration between natural and social scientists, the Earth Commission defines and operationalizes Earth system justice to ensure that boundaries reduce harm, increase well-being, and reflect substantive and procedural justice. Such stringent boundaries may also affect ‘just access’ to food, water, energy and infrastructure. We show how boundaries may need to be adjusted to reduce harm and increase access, and challenge inequality to ensure a safe and just future for people, other species and the planet. Earth system justice may enable living justly within boundaries. 
  •  
5.
  • Lenton, Timothy M., et al. (author)
  • A resilience sensing system for the biosphere
  • 2022
  • In: Philosophical Transactions of the Royal Society of London. Biological Sciences. - : The Royal Society. - 0962-8436 .- 1471-2970. ; 377:1857
  • Journal article (peer-reviewed)abstract
    • We are in a climate and ecological emergency, where climate change and direct anthropogenic interference with the biosphere are risking abrupt and/or irreversible changes that threaten our life-support systems. Efforts are underway to increase the resilience of some ecosystems that are under threat, yet collective awareness and action are modest at best. Here, we highlight the potential for a biosphere resilience sensing system to make it easier to see where things are going wrong, and to see whether deliberate efforts to make things better are working. We focus on global resilience sensing of the terrestrial biosphere at high spatial and temporal resolution through satellite remote sensing, utilizing the generic mathematical behaviour of complex systems—loss of resilience corresponds to slower recovery from perturbations, gain of resilience equates to faster recovery. We consider what subset of biosphere resilience remote sensing can monitor, critically reviewing existing studies. Then we present illustrative, global results for vegetation resilience and trends in resilience over the last 20 years, from both satellite data and model simulations. We close by discussing how resilience sensing nested across global, biome-ecoregion, and local ecosystem scales could aid management and governance at these different scales, and identify priorities for further work.
  •  
6.
  • Obura, David O., et al. (author)
  • Achieving a nature- and people-positive future
  • 2023
  • In: One Earth. - : Elsevier BV. - 2590-3330 .- 2590-3322. ; 6:2, s. 105-117
  • Research review (peer-reviewed)abstract
    • Despite decades of increasing investment in conservation, we have not succeeded in “bending the curve” of biodiversity decline. Efforts to meet new targets and goals for the next three decades risk repeating this outcome due to three factors: neglect of increasing drivers of decline; unrealistic expectations and time frames of biodiversity recovery; and insufficient attention to justice within and between generations and across countries. Our Earth system justice approach identifies six sets of actions that when tackled simultaneously address these failings: (1) reduce and reverse direct and indirect drivers causing decline; (2) halt and reverse biodiversity loss; (3) restore and regenerate biodiversity to a safe state; (4) raise minimum wellbeing for all; (5) eliminate over-consumption and excesses associated with accumulation of capital; and (6) uphold and respect the rights and responsibilities of all communities, present and future. Current conservation campaigns primarily address actions 2 and 3, with urgent upscaling of actions 1, 4, 5, and 6 needed to help deliver the post-2020 global biodiversity framework.
  •  
7.
  • Rammelt, Crelis F., et al. (author)
  • Impacts of meeting minimum access on critical earth systems amidst the Great Inequality
  • 2023
  • In: Nature Sustainability. - : Springer Science and Business Media LLC. - 2398-9629. ; 6:2, s. 212-221
  • Journal article (peer-reviewed)abstract
    • The Sustainable Development Goals aim to improve access to resources and services, reduce environmental degradation, eradicate poverty and reduce inequality. However, the magnitude of the environmental burden that would arise from meeting the needs of the poorest is under debate—especially when compared to much larger burdens from the rich. We show that the ‘Great Acceleration’ of human impacts was characterized by a ‘Great Inequality’ in using and damaging the environment. We then operationalize ‘just access’ to minimum energy, water, food and infrastructure. We show that achieving just access in 2018, with existing inequalities, technologies and behaviours, would have produced 2–26% additional impacts on the Earth’s natural systems of climate, water, land and nutrients—thus further crossing planetary boundaries. These hypothetical impacts, caused by about a third of humanity, equalled those caused by the wealthiest 1–4%. Technological and behavioural changes thus far, while important, did not deliver just access within a stable Earth system. Achieving these goals therefore calls for a radical redistribution of resources.
  •  
8.
  • Rockström, Johan, et al. (author)
  • Identifying a Safe and Just Corridor for People and the Planet
  • 2021
  • In: Earth's Future. - 2328-4277. ; 9:4
  • Journal article (peer-reviewed)abstract
    • Keeping the Earth system in a stable and resilient state, to safeguard Earth's life support systems while ensuring that Earth's benefits, risks, and related responsibilities are equitably shared, constitutes the grand challenge for human development in the Anthropocene. Here, we describe a framework that the recently formed Earth Commission will use to define and quantify target ranges for a safe and just corridor that meets these goals. Although safe and just Earth system targets are interrelated, we see safe as primarily referring to a stable Earth system and just targets as being associated with meeting human needs and reducing exposure to risks. To align safe and just dimensions, we propose to address the equity dimensions of each safe target for Earth system regulating systems and processes. The more stringent of the safe or just target ranges then defines the corridor. Identifying levers of social transformation aimed at meeting the safe and just targets and challenges associated with translating the corridor to actors at multiple scales present scope for future work.
  •  
9.
  • Rockström, Johan, 1965-, et al. (author)
  • The planetary commons : A new paradigm for safeguarding Earth-regulating systems in the Anthropocene
  • 2024
  • In: Proceedings of the National Academy of Sciences of the United States of America. - 0027-8424 .- 1091-6490. ; 121:5
  • Journal article (peer-reviewed)abstract
    • The Anthropocene signifies the start of a no-analogue trajectory of the Earth system that is fundamentally different from the Holocene. This new trajectory is characterized by rising risks of triggering irreversible and unmanageable shifts in Earth system functioning. We urgently need a new global approach to safeguard critical Earth system regulating functions more effectively and comprehensively. The global commons framework is the closest example of an existing approach with the aim of governing biophysical systems on Earth upon which the world collectively depends. Derived during stable Holocene conditions, the global commons framework must now evolve in the light of new Anthropocene dynamics. This requires a fundamental shift from a focus only on governing shared resources beyond national jurisdiction, to one that secures critical functions of the Earth system irrespective of national boundaries. We propose a new framework—the planetary commons—which differs from the global commons framework by including not only globally shared geographic regions but also critical biophysical systems that regulate the resilience and state, and therefore livability, on Earth. The new planetary commons should articulate and create comprehensive stewardship obligations through Earth system governance aimed at restoring and strengthening planetary resilience and justice. 
  •  
10.
  • Sproson, Adam D., et al. (author)
  • Osmium and lithium isotope evidence for weathering feedbacks linked to orbitally paced organic carbon burial and Silurian glaciations
  • 2022
  • In: Earth and Planetary Science Letters. - : Elsevier BV. - 0012-821X. ; 577
  • Journal article (peer-reviewed)abstract
    • The Ordovician (∼487 to 443 Ma) ended with the formation of extensive Southern Hemisphere ice sheets, known as the Hirnantian glaciation, and the second largest mass extinction in Earth History. It was followed by the Silurian (∼443 to 419 Ma), one of the most climatically unstable periods of the Phanerozoic as evidenced by several large scale (>5‰) carbon isotope (δ13C) perturbations associated with further extinction events. Despite several decades of research, the cause of these environmental instabilities remains enigmatic. Here, we provide osmium (187Os/188Os) and lithium (δ7Li) isotope measurements of marine sedimentary rocks that cover four Silurian δ13C excursions. Osmium and Li isotope records resemble those previously recorded for the Hirnantian glaciation suggesting a similar causal mechanism. When combined with a new dynamic carbon-osmium-lithium biogeochemical model we suggest that astronomical forcing of the marine organic carbon cycle, as opposed to a decline in volcanic arc degassing or the rise of early land plants, resulted in drawdown of atmospheric CO2, triggering continental scale glaciation, intense global cooling and eustatic sea-level lows recognised in the geological record. Lower atmospheric pCO2 and temperatures during the Hirnantian and Silurian glaciations suppressed CO2 removal by silicate weathering, driving 187Os/188Os and δ7Li variability, supporting the existence of climate-regulating feedbacks.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-10 of 12

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view