SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Levis S.) srt2:(2010-2014)"

Search: WFRF:(Levis S.) > (2010-2014)

  • Result 1-4 of 4
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Piao, S. L., et al. (author)
  • The carbon budget of terrestrial ecosystems in East Asia over the last two decades
  • 2012
  • In: Biogeosciences. - : Copernicus GmbH. - 1726-4189. ; 9:9, s. 3571-3586
  • Journal article (peer-reviewed)abstract
    • This REgional Carbon Cycle Assessment and Processes regional study provides a synthesis of the carbon balance of terrestrial ecosystems in East Asia, a region comprised of China, Japan, North and South Korea, and Mongolia. We estimate the current terrestrial carbon balance of East Asia and its driving mechanisms during 1990-2009 using three different approaches: inventories combined with satellite greenness measurements, terrestrial ecosystem carbon cycle models and atmospheric inversion models. The magnitudes of East Asia's terrestrial carbon sink from these three approaches are comparable: -0.293 +/- 0.033 PgC yr(-1) from inventory-remote sensing model-data fusion approach, -0.413 +/- 0.141 PgC yr(-1)(not considering biofuel emissions) or -0.224 +/- 0.141 PgC yr(-1) (considering biofuel emissions) for carbon cycle models, and -0.270 +/- 0.507 PgC yr(-1) for atmospheric inverse models. Here and in the following, the numbers behind +/- signs are standard deviations. The ensemble of ecosystem modeling based analyses further suggests that at the regional scale, climate change and rising atmospheric CO2 together resulted in a carbon sink of -0.289 +/- 0.135 PgC yr(-1), while land-use change and nitrogen deposition had a contribution of -0.013 +/- 0.029 PgC yr(-1) and -0.107 +/- 0.025 PgC yr(-1), respectively. Although the magnitude of climate change effects on the carbon balance varies among different models, all models agree that in response to climate change alone, southern China experienced an increase in carbon storage from 1990 to 2009, while northern East Asia including Mongolia and north China showed a decrease in carbon storage. Overall, our results suggest that about 13-27% of East Asia's CO2 emissions from fossil fuel burning have been offset by carbon accumulation in its terrestrial territory over the period from 1990 to 2009. The underlying mechanisms of carbon sink over East Asia still remain largely uncertain, given the diversity and intensity of land management processes, and the regional conjunction of many drivers such as nutrient deposition, climate, atmospheric pollution and CO2 changes, which cannot be considered as independent for their effects on carbon storage.
  •  
2.
  • Sitch, S., et al. (author)
  • Trends and drivers of regional sources and sinks of carbon dioxide over the past two decades
  • 2013
  • In: Biogeosciences Discussions. - : Copernicus GmbH. - 1810-6277. ; 10, s. 20113-20177
  • Journal article (other academic/artistic)abstract
    • Abstract. The land and ocean absorb on average over half of the anthropogenic emissions of carbon dioxide (CO2) every year. These CO2 "sinks" are modulated by climate change and variability. Here we use a suite of nine Dynamic Global Vegetation Models (DGVMs) and four Ocean Biogeochemical General Circulation Models (OBGCMs) to quantify the global and regional climate and atmospheric CO2 – driven trends in land and oceanic CO2 exchanges with the atmosphere over the period 1990–2009, attribute these trends to underlying processes, and quantify the uncertainty and level of model agreement. The models were forced with reconstructed climate fields and observed global atmospheric CO2; Land Use and Land Cover Changes are not included for the DGVMs. Over the period 1990–2009, the DGVMs simulate a mean global land carbon sink of −2.4 ± 0.7 Pg C yr−1 with a small significant trend of −0.06 ± 0.03 Pg C yr−2 (increasing sink). Over the more limited period 1990–2004, the ocean models simulate a mean ocean sink of –2.2 ± 0.2 Pg C yr–1 with a trend in the net C uptake that is indistinguishable from zero (−0.01 ± 0.02 Pg C yr−2). The two ocean models that extended the simulations until 2009 suggest a slightly stronger, but still small trend of −0.02 ± 0.01 Pg C yr−2. Trends from land and ocean models compare favourably to the land greenness trends from remote sensing, atmospheric inversion results, and the residual land sink required to close the global carbon budget. Trends in the land sink are driven by increasing net primary production (NPP) whose statistically significant trend of 0.22 ± 0.08 Pg C yr−2 exceeds a significant trend in heterotrophic respiration of 0.16 ± 0.05 Pg C yr−2 – primarily as a consequence of wide-spread CO2 fertilisation of plant production. Most of the land-based trend in simulated net carbon uptake originates from natural ecosystems in the tropics (−0.04 ± 0.01 Pg C yr−2), with almost no trend over the northern land region, where recent warming and reduced rainfall offsets the positive impact of elevated atmospheric CO2 on carbon storage. The small uptake trend in the ocean models emerges because climate variability and change, and in particular increasing sea surface temperatures, tend to counteract the trend in ocean uptake driven by the increase in atmospheric CO2. Large uncertainty remains in the magnitude and sign of modelled carbon trends in several regions, and on the influence of land use and land cover changes on regional trends.
  •  
3.
  • Levis, Mark, et al. (author)
  • Results from a randomized trial of salvage chemotherapy followed by lestaurtinib for patients with FLT3 mutant AML in first relapse
  • 2011
  • In: Blood. - : American Society of Hematology. - 1528-0020 .- 0006-4971. ; 117:12, s. 3294-3301
  • Journal article (peer-reviewed)abstract
    • In a randomized trial of therapy for FMS-like tyrosine kinase-3 (FLT3) mutant acute myeloid leukemia in first relapse, 224 patients received chemotherapy alone or followed by 80 mg of the FLT3 inhibitor lestaurtinib twice daily. Endpoints included complete remission or complete remission with incomplete platelet recovery (CR/CRp), overall survival, safety, and tolerability. Correlative studies included pharmacokinetics and analysis of in vivo FLT3 inhibition. There were 29 patients with CR/CRp in the lestaurtinib arm and 23 in the control arm (26% vs 21%; P = .35), and no difference in overall survival between the 2 arms. There was evidence of toxicity in the lestaurtinib-treated patients, particularly those with plasma levels in excess of 20 mu M. In the lestaurtinib arm, FLT3 inhibition was highly correlated with remission rate, but target inhibition on day 15 was achieved in only 58% of patients receiving lestaurtinib. Given that such a small proportion of patients on this trial achieved sustained FLT3 inhibition in vivo, any conclusions regarding the efficacy of combining FLT3 inhibition with chemotherapy are limited. Overall, lestaurtinib treatment after chemotherapy did not increase response rates or prolong survival of patients with FLT3 mutant acute myeloid leukemia in first relapse. This study is registered at www.clinicaltrials.gov as #NCT00079482. (Blood. 2011;117(12): 3294-3301)
  •  
4.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-4 of 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view