SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Li Xianchan 1982) srt2:(2018)"

Search: WFRF:(Li Xianchan 1982) > (2018)

  • Result 1-3 of 3
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Li, Xianchan, 1982, et al. (author)
  • Nanopore Opening at Flat and Nanotip Conical Electrodes during Vesicle Impact Electrochemical Cytometry
  • 2018
  • In: ACS Nano. - : American Chemical Society (ACS). - 1936-0851 .- 1936-086X. ; 12:3, s. 3010-3019
  • Journal article (peer-reviewed)abstract
    • The oxidation of catecholamine at a microelectrode, following its release from individual vesicles, allows interrogation of the content of single nanometer vesicles with vesicle impact electrochemical cytometry (VIEC). Previous to this development, there were no methods available to quantify the chemical load of single vesicles. However, accurate quantification of the content is hampered by uncertainty in the proportion of substituent molecules reaching the electrode surface (collection efficiency). In this work, we use quantitative modeling to calculate this collection efficiency. For all vesicles except those at the very edge of the electrode, modeling shows that ∼100% oxidation efficiency is achieved when employing a 33 μm diameter disk microelectrode for VIEC, independent of the location of the vesicle release pore. We use this to experimentally determine a precise distribution of catecholamine in individual vesicles extracted from PC12 cells. In contrast, we calculate that when a nanotip conical electrode (∼4 μm length, ∼1.5 μm diameter at the base) is employed, as in intracellular VIEC (IVIEC), the current-time response depends strongly on the position of the catecholamine-releasing pore in the vesicle membrane. When vesicle release occurs with the pore opening occurring far from the electrode, lower currents and partial oxidation (∼75%) of the catecholamine are predicted, as compared to higher currents and ∼100% oxidation, when the pore is close to/at the electrode surface. As close agreement is observed between the experimentally measured vesicular content in intracellular and extracted vesicles from the same cell line using nanotip and disk electrodes, respectively, we conclude that pores open at the electrode surface. Not only does this suggest that electroporation of the vesicle membrane is the primary driving force for catecholamine release from vesicles at polarized electrodes, but it also indicates that IVIEC with nanotip electrodes can directly assess vesicular content without correction. © 2018 American Chemical Society.
  •  
2.
  • Mohammadi, Amir Saeid, et al. (author)
  • Mass Spectrometry Imaging Suggests That Cisplatin Affects Exocytotic Release by Alteration of Cell Membrane Lipids
  • 2018
  • In: Analytical Chemistry. - : American Chemical Society (ACS). - 0003-2700 .- 1520-6882. ; 90:14, s. 8509-8516
  • Journal article (peer-reviewed)abstract
    • We used time-of-flight secondary ion mass spectrometry (TOFSIMS) imaging to investigate the effect of cisplatin, the first member of the platinum-based anticancer drugs, on the membrane lipid composition of model cells to see if lipid changes might be involved in the changes in exocytosis observed. Platinum-based anticancer drugs have been reported to affect neurotransmitter release resulting in what is called the "chemobrain"; however, the mechanism for the influence is not yet understood. TOF-SIMS imaging was carried out using a high energy 40 keV (CO2)(6000)(+) gas cluster ion beam with improved sensitivity for intact lipids in biological samples. Principal components analysis showed that cisplatin treatment of PC12 cells significantly affects the abundance of different lipids and their derivatives, particularly phosphatidylcholine and cholesterol, which are diminished. Treatment of cells with 2 mu M and 100 mu M cisplatin showed similar effects on induced lipid changes. Lipid content alterations caused by cisplatin treatment at the cell surface are associated with the molecular and bimolecular signaling pathways of cisplatin-induced apoptosis of cells. We suggest that lipid alterations measured by TOF-SIMS are involved, at least in part, in the regulation of exocytosis by cisplatin.
  •  
3.
  • Xianchan, Li, 1982, et al. (author)
  • Electrochemical quantification of transmitter concentration in single nanoscale vesicles isolated from PC12 cells
  • 2018
  • In: Faraday Discussions. - : Royal Society of Chemistry (RSC). - 1359-6640 .- 1364-5498. ; 210, s. 353-364
  • Journal article (peer-reviewed)abstract
    • We use an electrochemical platform, nanoparticle tracking analysis, and differential centrifugation of single catecholamine vesicles to study the properties of nanometer transmitter vesicles, including the number of molecules, size, and catecholamine concentration inside. Vesicle impact electrochemical cytometry (VIEC) was used to quantify the catecholamine content of single vesicles in different batches isolated from pheochromocytoma (PC12) cells with different ultracentrifugation speeds. We show that, vesicles containing less catecholamine are obtained at subsequent centrifugation steps with higher speed (force). Important to quantification, the cumulative content after subsequent centrifugation steps is equivalent to that of one-step centrifugation at the highest speed, 70,000g. Moreover, as we count molecules in the vesicles, we compared molecular numbers from VIEC, flow VIEC, and intracellular VIEC to corresponding vesicle size measured by nanoparticle tracking analysis to evaluate catecholamine concentration in vesicles. The data suggest that vesicular catecholamine concentration is relatively constant and independent of the vesicular size, indicating vesicular transmitter content as a main factor regulating the vesicle size.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-3 of 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view