SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Li Xinzhong) srt2:(2020-2024)"

Search: WFRF:(Li Xinzhong) > (2020-2024)

  • Result 1-2 of 2
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • He, Zhuang, et al. (author)
  • Microwave-assisted synthesis of amorphous cobalt nanoparticle decorated N-doped biochar for highly efficient degradation of sulfamethazine via peroxymonosulfate activation
  • 2022
  • In: Journal of Water Process Engineering. - : Elsevier. - 2214-7144. ; 50
  • Journal article (peer-reviewed)abstract
    • In the present work, a microwave-assisted and secondary roasting preparation process was used to synthesize nanocomposite materials. These materials were modified with amorphous cobalt nanoparticles (Co NPs) on the surface of biochar doped with different nitrogen sources (melamine (Me), 1,10-phenanthroline (Ph), and urea (Ur)). The nanocomposite (Co-N-C(Ur)) with urea as the nitrogen source promoted the generation of mesopores on the surface of carbon materials due to its evaporation during the preparation process thus enhancing the attachment sites of cobalt nanoparticles. The Co-N-C(Ur) had a more significant degradation effect on the primary carcinogen sulfamethazine (SMT) by activating peroxymonosulfate (PMS). The degradation rate of SMT pollutants was 96.6 % within 30 min. The optimal reaction conditions were as follows: catalyst dosage of 0.4 g L−1, PMS dosage of 0.812 mM, SMT concentration of 10 mg L−1, and pH of 5.67. Additionally, the Co-N-C(Ur) catalysts possess excellent specific surface area due to the evaporation effect of the calcination process of urea itself compared to other nitrogen source doping. Electrochemical tests revealed that the composites prepared with urea as the nitrogen source had higher PMS-induced current density and lowered material impedance values, which effectively promoted the catalytic performance of SMT degradation. Concurrently, the Co-N-C (Ur) + PMS reaction system exhibited excellent catalytic performance against other antibiotic organic pollutants. Subsequently, through the capture experiments and electron paramagnetic resonance technical analyses, it was determined that the singlet 1O2 played a leading role in the reaction system. Finally, a thorough liquid chromatography-mass spectrometry analysis suggested the possible SMT degradation pathways, thereby providing a new strategy for the subsequent heterogeneous catalysts to degrade persistent organic pollutants.
  •  
2.
  • Tsuneto, Makoto, et al. (author)
  • Anomalous thermal effect in ZrTe5 observed via photothermal measurements
  • 2024
  • In: Physical Review Applied. - : American Physical Society (APS). - 2331-7019. ; 21:3
  • Journal article (peer-reviewed)abstract
    • In this study, we explore the magnetothermoelectric power (MTP) of ZrTe5, a canonical Dirac semimetal, through a photothermal technique. Unlike conventional thermoelectric studies that rely on on-chip heaters and are limited by fabrication processes, especially for stress-sensitive materials, our approach utilizes photothermal effects to induce temperature gradients. Our experiments, applying a magnetic field approximately parallel and transverse to the photocurrent detection direction, reveal that the photothermal method efficiently and reliably extracts both diagonal and off-diagonal components of the thermoelectric coefficient of ZrTe5. We observe that the longitudinal MTP reproduces features previously reported in thermal transport studies, while the photoinduced transverse MTP confirms the anomalous Nernst effect. This photothermal measurement technique opens avenues for investigating transport properties in a wide range of quantum materials, in both three-dimensional and two-dimensional systems.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-2 of 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view