SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Liljestrom P) srt2:(2020-2021)"

Sökning: WFRF:(Liljestrom P) > (2020-2021)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Marlin, R, et al. (författare)
  • Targeting SARS-CoV-2 receptor-binding domain to cells expressing CD40 improves protection to infection in convalescent macaques
  • 2021
  • Ingår i: Nature communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 12:1, s. 5215-
  • Tidskriftsartikel (refereegranskat)abstract
    • Achieving sufficient worldwide vaccination coverage against SARS-CoV-2 will require additional approaches to currently approved viral vector and mRNA vaccines. Subunit vaccines may have distinct advantages when immunizing vulnerable individuals, children and pregnant women. Here, we present a new generation of subunit vaccines targeting viral antigens to CD40-expressing antigen-presenting cells. We demonstrate that targeting the receptor-binding domain (RBD) of the SARS-CoV-2 spike protein to CD40 (αCD40.RBD) induces significant levels of specific T and B cells, with long-term memory phenotypes, in a humanized mouse model. Additionally, we demonstrate that a single dose of the αCD40.RBD vaccine, injected without adjuvant, is sufficient to boost a rapid increase in neutralizing antibodies in convalescent non-human primates (NHPs) exposed six months previously to SARS-CoV-2. Vaccine-elicited antibodies cross-neutralize different SARS-CoV-2 variants, including D614G, B1.1.7 and to a lesser extent B1.351. Such vaccination significantly improves protection against a new high-dose virulent challenge versus that in non-vaccinated convalescent animals.
  •  
2.
  •  
3.
  •  
4.
  • Szurgot, I, et al. (författare)
  • DNA-launched RNA replicon vaccines induce potent anti-SARS-CoV-2 immune responses in mice
  • 2021
  • Ingår i: Scientific reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 11:1, s. 3125-
  • Tidskriftsartikel (refereegranskat)abstract
    • The outbreak of the SARS-CoV-2 virus and its rapid spread into a global pandemic made the urgent development of scalable vaccines to prevent coronavirus disease (COVID-19) a global health and economic imperative. Here, we characterized and compared the immunogenicity of two alphavirus-based DNA-launched self-replicating (DREP) vaccine candidates encoding either SARS-CoV-2 spike glycoprotein (DREP-S) or a spike ectodomain trimer stabilized in prefusion conformation (DREP-Secto). We observed that the two DREP constructs were immunogenic in mice inducing both binding and neutralizing antibodies as well as T cell responses. Interestingly, the DREP coding for the unmodified spike turned out to be more potent vaccine candidate, eliciting high titers of SARS-CoV-2 specific IgG antibodies that were able to efficiently neutralize pseudotyped virus after a single immunization. In addition, both DREP constructs were able to efficiently prime responses that could be boosted with a heterologous spike protein immunization. These data provide important novel insights into SARS-CoV-2 vaccine design using a rapid response DNA vaccine platform. Moreover, they encourage the use of mixed vaccine modalities as a strategy to combat SARS-CoV-2.
  •  
5.
  • Szurgot, I, et al. (författare)
  • Infectious RNA vaccine protects mice against chikungunya virus infection
  • 2020
  • Ingår i: Scientific reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 10:1, s. 21076-
  • Tidskriftsartikel (refereegranskat)abstract
    • We describe a novel vaccine platform that can generate protective immunity to chikungunya virus (CHIKV) in C57BL/6J mice after a single immunization by employing an infectious RNA (iRNA), which upon introduction into a host cell launches an infectious attenuated virus. We and others have previously reported that an engineered deletion of 183 nucleotides in the nsP3 gene attenuates chikungunya virus (CHIKV) and reduces in vivo viral replication and viremia after challenge in mice, macaques and man. Here, we demonstrated that in vitro transfection of iRNA carrying the nsP3 deletion generated infectious viruses, and after intramuscular injection, the iRNA induced robust antibody responses in mice. The iRNA was superior at eliciting binding and neutralizing antibody responses as compared to a DNA vaccine encoding the same RNA (iDNA) or a non-propagating RNA replicon (RREP) lacking the capsid encoding gene. Subsequent challenge with a high dose of CHIKV demonstrated that the antibody responses induced by this vaccine candidate protected animals from viremia. The iRNA approach constitutes a novel vaccine platform with the potential to impact the spread of CHIKV. Moreover, we believe that this approach is likely applicable also to other positive-strand viruses.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy