SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Lind C) srt2:(1985-1989)"

Search: WFRF:(Lind C) > (1985-1989)

  • Result 1-2 of 2
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Eiken, Ola, et al. (author)
  • Human skeletal muscle function and metabolism during intense exercise at high O2 and N2 pressures
  • 1987
  • In: Journal of applied physiology. - : American Physiological Society. - 8750-7587 .- 1522-1601. ; 63:2, s. 571-575
  • Journal article (peer-reviewed)abstract
    • The maximal contractile force (peak torque) of the quadriceps femoris was studied during 60 repeated unilateral dynamic knee extensions in nine subjects under three different conditions, viz., during air breathing at normal (1 ATA) and raised (6 ATA) ambient pressures and during O2 breathing at 1.3 ATA. In six subjects the electromyographic (EMG) activity of the working muscle was recorded. Muscle biopsies were obtained from the vastus lateralis before, immediately after, and 1 min after exercise. Tissue specimens were subsequently assayed for various muscle metabolites. Peak torque, as an average of the 60 knee extensions, was higher (P less than 0.05) at 1.3 ATA than at 6 or 1 ATA. Peak torque of the exercising muscle declined more rapidly at 1 ATA than at 1.3 ATA, differing in the final 24 contractions by 14%. At 6 ATA peak torque of the initial 12 contractions was 6% lower (P less than 0.05) than at 1 ATA but equaled 1-ATA values in the latter third of the exercise bout. Although the EMG activity at 1 ATA increased relative to that at 6 ATA as exercise proceeded, the rate of force decline was greater at 1 ATA. Despite greater total work produced at 1.3 ATA than at 1 ATA, the metabolic response to exercise was not substantially altered at increased O2 pressure. However, the restitution rate of energy-rich phosphagens and the elimination of lactate during recovery were greater (P less than 0.05) at 1.3 ATA. These results suggest that hyperoxia may enhance the rate of energy release, whereas high N2 pressure and/or high hydrostatic pressure seem to interfere with neuromuscular activity.
  •  
2.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-2 of 2
Type of publication
journal article (2)
Type of content
peer-reviewed (2)
Author/Editor
Tesch, P.A (2)
Lind, F (2)
Hesser, C.M. (2)
Thorsson, A. (2)
Eiken, Ola (1)
Eiken, O. (1)
University
Royal Institute of Technology (1)
Mid Sweden University (1)
Language
English (2)
Research subject (UKÄ/SCB)
Medical and Health Sciences (2)
Year

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view