SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Lindfors L.) srt2:(2020-2024)"

Search: WFRF:(Lindfors L.) > (2020-2024)

  • Result 1-10 of 15
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Algaba, Juan-Carlos, et al. (author)
  • Broadband Multi-wavelength Properties of M87 during the 2017 Event Horizon Telescope Campaign
  • 2021
  • In: Astrophysical Journal Letters. - : American Astronomical Society. - 2041-8213 .- 2041-8205. ; 911:1
  • Research review (peer-reviewed)abstract
    • In 2017, the Event Horizon Telescope (EHT) Collaboration succeeded in capturing the first direct image of the center of the M87 galaxy. The asymmetric ring morphology and size are consistent with theoretical expectations for a weakly accreting supermassive black hole of mass ∼6.5 × 109 M o˙. The EHTC also partnered with several international facilities in space and on the ground, to arrange an extensive, quasi-simultaneous multi-wavelength campaign. This Letter presents the results and analysis of this campaign, as well as the multi-wavelength data as a legacy data repository. We captured M87 in a historically low state, and the core flux dominates over HST-1 at high energies, making it possible to combine core flux constraints with the more spatially precise very long baseline interferometry data. We present the most complete simultaneous multi-wavelength spectrum of the active nucleus to date, and discuss the complexity and caveats of combining data from different spatial scales into one broadband spectrum. We apply two heuristic, isotropic leptonic single-zone models to provide insight into the basic source properties, but conclude that a structured jet is necessary to explain M87's spectrum. We can exclude that the simultaneous γ-ray emission is produced via inverse Compton emission in the same region producing the EHT mm-band emission, and further conclude that the γ-rays can only be produced in the inner jets (inward of HST-1) if there are strongly particle-dominated regions. Direct synchrotron emission from accelerated protons and secondaries cannot yet be excluded.
  •  
2.
  • Abe, H., et al. (author)
  • Gamma-ray observations of MAXI J1820+070 during the 2018 outburst
  • 2022
  • In: Monthly notices of the Royal Astronomical Society. - : Oxford University Press. - 0035-8711 .- 1365-2966. ; 517:4, s. 4736-4751
  • Journal article (peer-reviewed)abstract
    • MAXIJ1820+070 is a low-mass X-ray binary with a black hole (BH) as a compact object. This binary underwent an exceptionally bright X-ray outburst from 2018 March to October, showing evidence of a non-thermal particle population through its radio emission during this whole period. The combined results of 59.5 h of observations of the MAXI J1820+070 outburst with the H.E.S.S., MAGIC and VERITAS experiments at energies above 200 GeV are presented, together with Fermi-LAT data between 0.1 and 500 GeV, and multiwavelength observations from radio to X-rays. Gamma-ray emission is not detected from MAXI J1820+070, but the obtained upper limits and the multiwavelength data allow us to put meaningful constraints on the source properties under reasonable assumptions regarding the non-thermal particle population and the jet synchrotron spectrum. In particular, it is possible to show that, if a high-energy (HE) gamma-ray emitting region is present during the hard state of the source, its predicted flux should be at most a factor of 20 below the obtained Fermi-LAT upper limits, and closer to them for magnetic fields significantly below equipartition. During the state transitions, under the plausible assumption that electrons are accelerated up to similar to 500 GeV, the multiwavelength data and the gamma-ray upper limits lead consistently to the conclusion that a potential HE and very-HE gamma-ray emitting region should be located at a distance from the BH ranging between 10(11) and 10(13) cm. Similar outbursts from low-mass X-ray binaries might be detectable in the near future with upcoming instruments such as CTA.
  •  
3.
  • Abdalla, H., et al. (author)
  • Sensitivity of the Cherenkov Telescope Array for probing cosmology and fundamental physics with gamma-ray propagation
  • 2021
  • In: Journal of Cosmology and Astroparticle Physics. - : Institute of Physics Publishing (IOPP). - 1475-7516. ; :2
  • Journal article (peer-reviewed)abstract
    • The Cherenkov Telescope Array (CTA), the new-generation ground-based observatory for gamma-ray astronomy, provides unique capabilities to address significant open questions in astrophysics, cosmology, and fundamental physics. We study some of the salient areas of gamma-ray cosmology that can be explored as part of the Key Science Projects of CTA, through simulated observations of active galactic nuclei (AGN) and of their relativistic jets. Observations of AGN with CTA will enable a measurement of gamma-ray absorption on the extragalactic background light with a statistical uncertainty below 15% up to a redshift z = 2 and to constrain or detect gamma-ray halos up to intergalactic-magnetic-field strengths of at least 0.3 pG. Extragalactic observations with CTA also show promising potential to probe physics beyond the Standard Model. The best limits on Lorentz invariance violation from gamma-ray astronomy will be improved by a factor of at least two to three. CTA will also probe the parameter space in which axion-like particles could constitute a significant fraction, if not all, of dark matter. We conclude on the synergies between CTA and other upcoming facilities that will foster the growth of gamma-ray cosmology.
  •  
4.
  • Adams, C. B., et al. (author)
  • Observation of the Gamma-Ray Binary HESS J0632+057 with the HESS, MAGIC, and VERITAS Telescopes
  • 2021
  • In: Astrophysical Journal. - : Institute of Physics Publishing (IOPP). - 0004-637X .- 1538-4357. ; 923:2
  • Journal article (peer-reviewed)abstract
    • The results of gamma-ray observations of the binary system HESS J0632 + 057 collected during 450 hr over 15 yr, between 2004 and 2019, are presented. Data taken with the atmospheric Cherenkov telescopes H.E.S.S., MAGIC, and VERITAS at energies above 350 GeV were used together with observations at X-ray energies obtained with Swift-XRT, Chandra, XMM-Newton, NuSTAR, and Suzaku. Some of these observations were accompanied by measurements of the H alpha emission line. A significant detection of the modulation of the very high-energy gamma-ray fluxes with a period of 316.7 +/- 4.4 days is reported, consistent with the period of 317.3 +/- 0.7 days obtained with a refined analysis of X-ray data. The analysis of data from four orbital cycles with dense observational coverage reveals short-timescale variability, with flux-decay timescales of less than 20 days at very high energies. Flux variations observed over a timescale of several years indicate orbit-to-orbit variability. The analysis confirms the previously reported correlation of X-ray and gamma-ray emission from the system at very high significance, but cannot find any correlation of optical H alpha parameters with fluxes at X-ray or gamma-ray energies in simultaneous observations. The key finding is that the emission of HESS J0632 + 057 in the X-ray and gamma-ray energy bands is highly variable on different timescales. The ratio of gamma-ray to X-ray flux shows the equality or even dominance of the gamma-ray energy range. This wealth of new data is interpreted taking into account the insufficient knowledge of the ephemeris of the system, and discussed in the context of results reported on other gamma-ray binary systems.
  •  
5.
  • Abdalla, H., et al. (author)
  • HESS and MAGIC observations of a sudden cessation of a very-high-energy gamma-ray flare in PKS 1510-089 in May 2016
  • 2021
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 648
  • Journal article (peer-reviewed)abstract
    • The flat spectrum radio quasar (FSRQ) PKS 1510-089 is known for its complex multiwavelength behaviour and it is one of only a few FSRQs detected in very-high-energy (VHE, E>100 GeV) gamma rays. The VHE gamma -ray observations with H.E.S.S. and MAGIC in late May and early June 2016 resulted in the detection of an unprecedented flare, which revealed, for the first time, VHE gamma -ray intranight variability for this source. While a common variability timescale of 1.5 h has been found, there is a significant deviation near the end of the flare, with a timescale of similar to 20 min marking the cessation of the event. The peak flux is nearly two orders of magnitude above the low-level emission. For the first time, a curvature was detected in the VHE gamma -ray spectrum of PKS 1510-089, which can be fully explained by the absorption on the part of the extragalactic background light. Optical R-band observations with ATOM revealed a counterpart of the gamma -ray flare, even though the detailed flux evolution differs from the VHE gamma -ray light curve. Interestingly, a steep flux decrease was observed at the same time as the cessation of the VHE gamma -ray flare. In the high-energy (HE, E> 100 MeV) gamma -ray band, only a moderate flux increase was observed with Fermi-LAT, while the HE gamma -ray spectrum significantly hardens up to a photon index of 1.6. A search for broad-line region (BLR) absorption features in the gamma -ray spectrum indicates that the emission region is located outside of the BLR. Radio very-long-baseline interferometry observations reveal a fast-moving knot interacting with a standing jet feature around the time of the flare. As the standing feature is located similar to 50 pc from the black hole, the emission region of the flare may have been located at a significant distance from the black hole. If this is indeed a true correlation, the VHE gamma rays must have been produced far down in the jet, where turbulent plasma crosses a standing shock.
  •  
6.
  • Acciari, V.A., et al. (author)
  • Monitoring the magnetar SGR 1935+2154 with the MAGIC telescopes
  • 2022
  • In: Proceedings of Science. - 1824-8039. ; 395
  • Conference paper (peer-reviewed)abstract
    • The Galactic magnetar SGR 1935+2154 was associated with a bright, millisecond-timescale fast radio burst (FRB) which occured in April 2020, during a flaring episode. This was the first time an FRB was unequivocally associated with a Galactic source, and the first FRB for which the nature of the emitting source was identified. Moreover, it was the first FRB with a counterpart at another wavelength correlated in time, an atypical, hard X-ray burst, which provides clear evidence for accompanying non-thermal processes. The MAGIC Telescopes are Imaging Air Cherenkov Telescopes (IACTs) sensitive to very-high-energy (VHE, E>100 GeV) gamma rays. Located at the center of the camera lies the MAGIC Central pixel, a single fully-modified photosensor-toreadout chain to measure millisecond-duration optical signals, displaying a maximum sensitivity at a wavelength of 350 nm. This allows MAGIC to operate simultaneously both as a VHE gammaray and a fast optical telescope. The MAGIC telescopes have monitored SGR 1935+2154 in a multiwavelength campaign involving X-ray, radio and optical facilities. In this contribution, we will show the results on the search for the VHE counterpart of the first SGR-FRB source in this multiwavelength context, as well as the search for fast optical bursts with the MAGIC Central Pixel.
  •  
7.
  •  
8.
  • Knevel, R, et al. (author)
  • Rheumatic?-A Digital Diagnostic Decision Support Tool for Individuals Suspecting Rheumatic Diseases: A Multicenter Pilot Validation Study
  • 2022
  • In: Frontiers in medicine. - : Frontiers Media SA. - 2296-858X. ; 9, s. 774945-
  • Journal article (peer-reviewed)abstract
    • Digital diagnostic decision support tools promise to accelerate diagnosis and increase health care efficiency in rheumatology. Rheumatic? is an online tool developed by specialists in rheumatology and general medicine together with patients and patient organizations. It calculates a risk score for several rheumatic diseases. We ran a pilot study retrospectively testing Rheumatic? for its ability to differentiate symptoms from existing or emerging immune-mediated rheumatic diseases from other rheumatic and musculoskeletal complaints and disorders in patients visiting rheumatology clinics.Materials and MethodsThe performance of Rheumatic? was tested using in three university rheumatology centers: (A) patients at Risk for RA (Karolinska Institutet, n = 50 individuals with musculoskeletal complaints and anti-citrullinated protein antibody positivity) (B) patients with early joint swelling [dataset B (Erlangen) n = 52]. (C) Patients with early arthritis where the clinician considered it likely to be of auto-immune origin [dataset C (Leiden) n = 73]. In dataset A we tested whether Rheumatic? could predict the development of arthritis. In dataset B and C we tested whether Rheumatic? could predict the development of an immune-mediated rheumatic diseases. We examined the discriminative power of the total score with the Wilcoxon rank test and the area-under-the-receiver-operating-characteristic curve (AUC-ROC). Next, we calculated the test characteristics for these patients passing the first or second expert-based Rheumatic? scoring threshold.ResultsThe total test scores differentiated between: (A) Individuals developing arthritis or not, median 245 vs. 163, P < 0.0001, AUC-ROC = 75.3; (B) patients with an immune-mediated arthritic disease or not median 191 vs. 107, P < 0.0001, AUC-ROC = 79.0; but less patients with an immune-mediated arthritic disease or not amongst those where the clinician already considered an immune mediated disease most likely (median 262 vs. 212, P < 0.0001, AUC-ROC = 53.6). Threshold-1 (advising to visit primary care doctor) was highly specific in dataset A and B (0.72, 0.87, and 0.23, respectively) and sensitive (0.67, 0.61, and 0.67). Threshold-2 (advising to visit rheumatologic care) was very specific in all three centers but not very sensitive: specificity of 1.0, 0.96, and 0.91, sensitivity 0.05, 0.07, 0.14 in dataset A, B, and C, respectively.ConclusionRheumatic? is a web-based patient-centered multilingual diagnostic tool capable of differentiating immune-mediated rheumatic conditions from other musculoskeletal problems. The current scoring system needs to be further optimized.
  •  
9.
  • Knevel, R, et al. (author)
  • Rheumatic?-A Digital Diagnostic Decision Support Tool for Individuals Suspecting Rheumatic Diseases: A Multicenter Pilot Validation Study
  • 2022
  • In: Frontiers in medicine. - : Frontiers Media SA. - 2296-858X. ; 9, s. 774945-
  • Journal article (peer-reviewed)abstract
    • Digital diagnostic decision support tools promise to accelerate diagnosis and increase health care efficiency in rheumatology. Rheumatic? is an online tool developed by specialists in rheumatology and general medicine together with patients and patient organizations. It calculates a risk score for several rheumatic diseases. We ran a pilot study retrospectively testing Rheumatic? for its ability to differentiate symptoms from existing or emerging immune-mediated rheumatic diseases from other rheumatic and musculoskeletal complaints and disorders in patients visiting rheumatology clinics.Materials and MethodsThe performance of Rheumatic? was tested using in three university rheumatology centers: (A) patients at Risk for RA (Karolinska Institutet, n = 50 individuals with musculoskeletal complaints and anti-citrullinated protein antibody positivity) (B) patients with early joint swelling [dataset B (Erlangen) n = 52]. (C) Patients with early arthritis where the clinician considered it likely to be of auto-immune origin [dataset C (Leiden) n = 73]. In dataset A we tested whether Rheumatic? could predict the development of arthritis. In dataset B and C we tested whether Rheumatic? could predict the development of an immune-mediated rheumatic diseases. We examined the discriminative power of the total score with the Wilcoxon rank test and the area-under-the-receiver-operating-characteristic curve (AUC-ROC). Next, we calculated the test characteristics for these patients passing the first or second expert-based Rheumatic? scoring threshold.ResultsThe total test scores differentiated between: (A) Individuals developing arthritis or not, median 245 vs. 163, P < 0.0001, AUC-ROC = 75.3; (B) patients with an immune-mediated arthritic disease or not median 191 vs. 107, P < 0.0001, AUC-ROC = 79.0; but less patients with an immune-mediated arthritic disease or not amongst those where the clinician already considered an immune mediated disease most likely (median 262 vs. 212, P < 0.0001, AUC-ROC = 53.6). Threshold-1 (advising to visit primary care doctor) was highly specific in dataset A and B (0.72, 0.87, and 0.23, respectively) and sensitive (0.67, 0.61, and 0.67). Threshold-2 (advising to visit rheumatologic care) was very specific in all three centers but not very sensitive: specificity of 1.0, 0.96, and 0.91, sensitivity 0.05, 0.07, 0.14 in dataset A, B, and C, respectively.ConclusionRheumatic? is a web-based patient-centered multilingual diagnostic tool capable of differentiating immune-mediated rheumatic conditions from other musculoskeletal problems. The current scoring system needs to be further optimized.
  •  
10.
  • Knevel, R, et al. (author)
  • RHEUMATIC? - A DIGITAL DIAGNOSTIC DECISION SUPPORT TOOL FOR INDIVIDUALS SUSPECTING RHEUMATIC DISEASES: A MULTICENTER VALIDATION STUDY
  • 2021
  • In: ANNALS OF THE RHEUMATIC DISEASES. - : BMJ. - 0003-4967 .- 1468-2060. ; 80, s. 87-88
  • Conference paper (other academic/artistic)abstract
    • Digital diagnostic decision support tools promise to accelerate diagnosis and increase health care efficiency in rheumatology. Rheumatic? is an online tool developed by specialists in rheumatology and general medicine together with patients and patient organizations for individuals suspecting a rheumatic disease.1,2 The tool can be used by people suspicious for rheumatic diseases resulting in individual advise on eventually seeking further health care.Objectives:We tested Rheumatic? for its ability to differentiate symptoms from immune-mediated diseases from other rheumatic and musculoskeletal complaints and disorders in patients visiting rheumatology clinics.Methods:The performance of Rheumatic? was tested using data from 175 patients from three university rheumatology centers covering two different settings:A.Risk-RA phase setting. Here, we tested whether Rheumatic? could predict the development of arthritis in 50 at risk-individuals with musculoskeletal complaints and anti-citrullinated protein antibody positivity from the KI (Karolinska Institutet)B.Early arthritis setting. Here, we tested whether Rheumatic? could predict the development of an immune-mediated rheumatic disease in i) EUMC (Erlangen) n=52 patients and ii) LUMC (Leiden) n=73 patients.In each setting, we examined the discriminative power of the total score with the Wilcoxon rank test and the area-under-the-receiver-operating-characteristic curve (AUC-ROC).Results:In setting A, the total test score clearly differentiated between individuals developing arthritis or not, median 245 versus 163, P < 0.0001, AUC-ROC = 75.3 (Figure 1). Also within patients with arthritis the Rheumatic? total score was significantly higher in patients developing an immune-mediated arthritic disease versus those who did not: median score EUMC 191 versus 107, P < 0.0001, AUC-ROC = 79.0, and LUMC 262 versus 212, P < 0.0001, AUC-ROC = 53.6.Figure 1.(Area under) the receiver operating curve for the total Rheumatic? scoreConclusion:Rheumatic? is a web-based patient-centered multilingual diagnostic tool capable of differentiating immune-mediated rheumatic conditions from other musculoskeletal problems. A following subject of research is how the tool performs in a population-wide setting.References:[1]Knitza J. et al. Mobile Health in Rheumatology: A Patient Survey Study Exploring Usage, Preferences, Barriers and eHealth Literacy. JMIR mHealth and uHealth. 2020.[2]https://rheumatic.elsa.science/en/Acknowledgements:This project has received funding from EIT Health. EIT Health is supported by the European Institute of Innovation and Technology (EIT), a body of the European Union that receives support from the European Union’s Horizon 2020 Research and Innovation program.This project has received funding from the Innovative Medicines Initiative 2 Joint Undertaking under grant agreement No 777357, RTCure.Disclosure of Interests:Rachel Knevel: None declared, Johannes Knitza: None declared, Aase Hensvold: None declared, Alexandra Circiumaru: None declared, Tor Bruce Employee of: Ocean Observations, Sebastian Evans Employee of: Elsa Science, Tjardo Maarseveen: None declared, Marc Maurits: None declared, Liesbeth Beaart- van de Voorde: None declared, David Simon: None declared, Arnd Kleyer: None declared, Martina Johannesson: None declared, Georg Schett: None declared, Thomas Huizinga: None declared, Sofia Svanteson Employee of: Elsa Science, Alexandra Lindfors Employee of: Ocean Observations, Lars Klareskog: None declared, Anca Catrina: None declared
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-10 of 15

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view