SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Lis R) srt2:(2020-2023)"

Search: WFRF:(Lis R) > (2020-2023)

  • Result 1-10 of 13
Sort/group result
   
EnumerationReferenceCoverFind
1.
  •  
2.
  • Biver, N., et al. (author)
  • Coma composition of comet 67P/Churyumov-Gerasimenko from radio-wave spectroscopy
  • 2023
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 672
  • Journal article (peer-reviewed)abstract
    • We present the results of a molecular survey of comet 67P/Churyumov-Gerasimenko undertaken with the Institut de RadioAstronomie Millimétrique (IRAM) 30-m radio telescope in November–December 2021, when it had its most favourable apparition in decades. Observations at IRAM 30-m during the 12–16 November period covered 8 GHz bandwidth at 3 mm, 16 GHz at 2 mm, and 60 GHz in the 1 mm window domain. These were completed by snapshots at 1 mm on 12–13 December and a short observation of the H2O line at 557 GHz with the Odin sub-millimetre observatory on 17.0 November 2021, and with 18-cm observations of OH with the Nançay radio telescope. Less sensitive observations obtained at a previous perihelion passage on 18–22 September 2015 with IRAM and 9–12 November 2015 with Odin are also presented. The gas outflow velocity, outgassing pattern, and temperature have been accurately constrained by the observations. They are perfectly consistent with those measured in situ with the Rosetta/MIRO sub-millimetre instrument in 2015. In particular, the asymmetry of the line is well represented by a jet concentrating three-quarters of the outgassing in about π steradians. We derived abundances relative to water for seven molecules and significant upper limits for approximately five others. The retrieved abundances were compared to those measured in situ at the previous perihelion with Rosetta. While those of HCN, CH3OH, and HNCO are comparable, 67P is found to be depleted in H2S and relatively normal in CS (H2S/CS ≈ 3) in strong contradiction with the Rosetta/ROSINA mass spectrometer measurement of the H2S/CS2 (≈100) abundance ratio. While the formaldehyde total abundance found with IRAM 30-m when assuming it to be mostly produced by a distributed source (Haser parent scale length ≈8000 km) is similar to the one derived by Rosetta/ROSINA, we find that the formaldehyde coming from the nucleus is one order of magnitude less abundant than measured in situ by Rosetta/ROSINA. 
  •  
3.
  •  
4.
  •  
5.
  • van Dishoeck, E. F., et al. (author)
  • Water in star-forming regions: Physics and chemistry from clouds to disks as probed by Herschel spectroscopy
  • 2021
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 648
  • Journal article (peer-reviewed)abstract
    • Context. Water is a key molecule in the physics and chemistry of star and planet formation, but it is difficult to observe from Earth. The Herschel Space Observatory provided unprecedented sensitivity as well as spatial and spectral resolution to study water. The Water In Star-forming regions with Herschel (WISH) key program was designed to observe water in a wide range of environments and provide a legacy data set to address its physics and chemistry. Aims. The aim of WISH is to determine which physical components are traced by the gas-phase water lines observed with Herschel and to quantify the excitation conditions and water abundances in each of these components. This then provides insight into how and where the bulk of the water is formed in space and how it is transported from clouds to disks, and ultimately comets and planets. Methods. Data and results from WISH are summarized together with those from related open time programs. WISH targeted ∼80 sources along the two axes of luminosity and evolutionary stage: from low- to high-mass protostars (luminosities from <1 to > 10Lpdbl) and from pre-stellar cores to protoplanetary disks. Lines of H2O and its isotopologs, HDO, OH, CO, and [O I], were observed with the HIFI and PACS instruments, complemented by other chemically-related molecules that are probes of ultraviolet, X-ray, or grain chemistry. The analysis consists of coupling the physical structure of the sources with simple chemical networks and using non-LTE radiative transfer calculations to directly compare models and observations. Results. Most of the far-infrared water emission observed with Herschel in star-forming regions originates from warm outflowing and shocked gas at a high density and temperature (> 10cm-3, 300-1000 K, v ∼ 25 km s-1), heated by kinetic energy dissipation. This gas is not probed by single-dish low-J CO lines, but only by CO lines with Jup > 14. The emission is compact, with at least two different types of velocity components seen. Water is a significant, but not dominant, coolant of warm gas in the earliest protostellar stages. The warm gas water abundance is universally low: orders of magnitude below the H2O/H2 abundance of 4 × 10-4 expected if all volatile oxygen is locked in water. In cold pre-stellar cores and outer protostellar envelopes, the water abundance structure is uniquely probed on scales much smaller than the beam through velocity-resolved line profiles. The inferred gaseous water abundance decreases with depth into the cloud with an enhanced layer at the edge due to photodesorption of water ice. All of these conclusions hold irrespective of protostellar luminosity. For low-mass protostars, a constant gaseous HDO/H2O ratio of ∼0.025 with position into the cold envelope is found. This value is representative of the outermost photodesorbed ice layers and cold gas-phase chemistry, and much higher than that of bulk ice. In contrast, the gas-phase NH3 abundance stays constant as a function of position in low-mass pre- and protostellar cores. Water abundances in the inner hot cores are high, but with variations from 5 × 10-6 to a few × 10-4 for low- and high-mass sources. Water vapor emission from both young and mature disks is weak. Conclusions. The main chemical pathways of water at each of the star-formation stages have been identified and quantified. Low warm water abundances can be explained with shock models that include UV radiation to dissociate water and modify the shock structure. UV fields up to 102-10times the general interstellar radiation field are inferred in the outflow cavity walls on scales of the Herschel beam from various hydrides. Both high temperature chemistry and ice sputtering contribute to the gaseous water abundance at low velocities, with only gas-phase (re-)formation producing water at high velocities. Combined analyses of water gas and ice show that up to 50% of the oxygen budget may be missing. In cold clouds, an elegant solution is that this apparently missing oxygen is locked up in larger μm-sized grains that do not contribute to infrared ice absorption. The fact that even warm outflows and hot cores do not show H2O at full oxygen abundance points to an unidentified refractory component, which is also found in diffuse clouds. The weak water vapor emission from disks indicates that water ice is locked up in larger pebbles early on in the embedded Class I stage and that these pebbles have settled and drifted inward by the Class II stage. Water is transported from clouds to disks mostly as ice, with no evidence for strong accretion shocks. Even at abundances that are somewhat lower than expected, many oceans of water are likely present in planet-forming regions. Based on the lessons for galactic protostars, the low-J H2O line emission (Eup < 300 K) observed in extragalactic sources is inferred to be predominantly collisionally excited and to originate mostly from compact regions of current star formation activity. Recommendations for future mid- to far-infrared missions are made.
  •  
6.
  • Wiedner, M.C., et al. (author)
  • Heterodyne Receiver for Origins
  • 2021
  • In: Journal of Astronomical Telescopes, Instruments, and Systems. - 2329-4221 .- 2329-4124. ; 7:1
  • Journal article (peer-reviewed)abstract
    • The Heterodyne Receiver for Origins (HERO) is the first detailed study of a heterodyne focal plane array receiver for space applications. HERO gives the Origins Space Telescope the capability to observe at very high spectral resolution (R = 107) over an unprecedentedly large far-infrared (FIR) wavelengths range (111 to 617 μm) with high sensitivity, with simultaneous dual polarization and dual-frequency band operation. The design is based on prior successful heterodyne receivers, such as Heterodyne Instrument for the Far-Infrared/Herschel, but surpasses it by one to two orders of magnitude by exploiting the latest technological developments. Innovative components are used to keep the required satellite resources low and thus allowing for the first time a convincing design of a large format heterodyne array receiver for space. HERO on Origins is a unique tool to explore the FIR universe and extends the enormous potential of submillimeter astronomical spectroscopy into new areas of astronomical research.
  •  
7.
  • De Groot, Natasja M.S., et al. (author)
  • Critical appraisal of technologies to assess electrical activity during atrial fibrillation : a position paper from the European Heart Rhythm Association and European Society of Cardiology Working Group on eCardiology in collaboration with the Heart Rhythm Society, Asia Pacific Heart Rhythm Society, Latin American Heart Rhythm Society and Computing in Cardiology
  • 2022
  • In: Europace. - : Oxford University Press (OUP). - 1099-5129. ; 24:2, s. 313-330
  • Research review (peer-reviewed)abstract
    • We aim to provide a critical appraisal of basic concepts underlying signal recording and processing technologies applied for (i) atrial fibrillation (AF) mapping to unravel AF mechanisms and/or identifying target sites for AF therapy and (ii) AF detection, to optimize usage of technologies, stimulate research aimed at closing knowledge gaps, and developing ideal AF recording and processing technologies. Recording and processing techniques for assessment of electrical activity during AF essential for diagnosis and guiding ablative therapy including body surface electrocardiograms (ECG) and endo- or epicardial electrograms (EGM) are evaluated. Discussion of (i) differences in uni-, bi-, and multi-polar (omnipolar/Laplacian) recording modes, (ii) impact of recording technologies on EGM morphology, (iii) global or local mapping using various types of EGM involving signal processing techniques including isochronal-, voltage- fractionation-, dipole density-, and rotor mapping, enabling derivation of parameters like atrial rate, entropy, conduction velocity/direction, (iv) value of epicardial and optical mapping, (v) AF detection by cardiac implantable electronic devices containing various detection algorithms applicable to stored EGMs, (vi) contribution of machine learning (ML) to further improvement of signals processing technologies. Recording and processing of EGM (or ECG) are the cornerstones of (body surface) mapping of AF. Currently available AF recording and processing technologies are mainly restricted to specific applications or have technological limitations. Improvements in AF mapping by obtaining highest fidelity source signals (e.g. catheter-electrode combinations) for signal processing (e.g. filtering, digitization, and noise elimination) is of utmost importance. Novel acquisition instruments (multi-polar catheters combined with improved physical modelling and ML techniques) will enable enhanced and automated interpretation of EGM recordings in the near future.
  •  
8.
  • Einig, Lucas, et al. (author)
  • Deep learning denoising by dimension reduction: Application to the ORION-B line cubes
  • 2023
  • In: Astronomy and Astrophysics. - 0004-6361 .- 1432-0746. ; 677
  • Journal article (peer-reviewed)abstract
    • Context. The availability of large bandwidth receivers for millimeter radio telescopes allows for the acquisition of position-position-frequency data cubes over a wide field of view and a broad frequency coverage. These cubes contain a lot of information on the physical, chemical, and kinematical properties of the emitting gas. However, their large size coupled with an inhomogenous signal-to-noise ratio (S/N) are major challenges for consistent analysis and interpretation. Aims. We searched for a denoising method of the low S/N regions of the studied data cubes that would allow the low S/N emission to be recovered without distorting the signals with a high S/N. Methods. We performed an in-depth data analysis of the 13CO and C17O (1-0) data cubes obtained as part of the ORION-B large program performed at the IRAM 30 m telescope. We analyzed the statistical properties of the noise and the evolution of the correlation of the signal in a given frequency channel with that of the adjacent channels. This has allowed us to propose significant improvements of typical autoassociative neural networks, often used to denoise hyperspectral Earth remote sensing data. Applying this method to the 13CO (1-0) cube, we were able to compare the denoised data with those derived with the multiple Gaussian fitting algorithm ROHSA, considered as the state-of-the-art procedure for data line cubes. Results. The nature of astronomical spectral data cubes is distinct from that of the hyperspectral data usually studied in the Earth remote sensing literature because the observed intensities become statistically independent beyond a short channel separation. This lack of redundancy in data has led us to adapt the method, notably by taking into account the sparsity of the signal along the spectral axis. The application of the proposed algorithm leads to an increase in the S/N in voxels with a weak signal, while preserving the spectral shape of the data in high S/N voxels. Conclusions. The proposed algorithm that combines a detailed analysis of the noise statistics with an innovative autoencoder architecture is a promising path to denoise radio-astronomy line data cubes. In the future, exploring whether a better use of the spatial correlations of the noise may further improve the denoising performances seems to be a promising avenue. In addition, dealing with the multiplicative noise associated with the calibration uncertainty at high S/N would also be beneficial for such large data cubes.
  •  
9.
  • Farnsworth, Wesley R., et al. (author)
  • Holocene glacial history of Svalbard : Status, perspectives and challenges
  • 2020
  • In: Earth-Science Reviews. - : Elsevier BV. - 0012-8252. ; 208
  • Journal article (peer-reviewed)abstract
    • We synthesize the current understanding of glacier activity on Svalbard from the end of the Late Pleistocene (12,000 yrs. before present) to the end of the Little Ice Age (c. 1920 AD). Our glacier history is derived from the SVALHOLA database, the first compilation of Holocene geochronology for Svalbard and the surrounding waters, including over 1,800 radiocarbon, terrestrial cosmogenic nuclide and optically stimulated luminescence ages. Data have been categorized by geological setting, uniformly (re-)calibrated, quality assessed and ultimately used to constrain glacier fluctuations (deglaciation, ice free conditions, glacier re-advances and ice marginal positions). We advance existing knowledge by mapping the extent and distribution of ice-cover during the Holocene glacial maximum and the glacial minimum, as well as present retreat rates (and percentages) within Early Holocene fjord-systems. Throughout the Holocene, Svalbard glaciers have responded to a varying combination of climatic, environmental and dynamic driving factors which influence both the extent and behavior of ice margins. We discuss the complexities of glacier systems and their dynamics in response to changes in climate. This review provides a holistic state of the art of Holocene glaciers on Svalbard, suitable for orienting future works which address gaps in our current knowledge.
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-10 of 13

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view