SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Liu Wanyu) srt2:(2022)"

Search: WFRF:(Liu Wanyu) > (2022)

  • Result 1-4 of 4
Sort/group result
   
EnumerationReferenceCoverFind
1.
  •  
2.
  • Kong, Xiangrui, et al. (author)
  • Surface solvation of Martian salt analogues at low relative humidities
  • 2022
  • In: Environmental Science: Atmospheres. - : Royal Society of Chemistry (RSC). - 2634-3606. ; 2:2, s. 137-145
  • Journal article (peer-reviewed)abstract
    • Salt aerosols play important roles in many processes related to atmospheric chemistry and the climate systems on both Earth and Mars. Complicated and still poorly understood processes occur on the salt surfaces when interacting with water vapor. In this study, ambient pressure X-ray photoelectron spectroscopy (APXPS) is used to characterize the surface chemical environment of Martian salt analogues originating from saline lakes and playas, as well as their responses to varying relative humidities. Generally, APXPS shows similar ionic compositions to those observed by ion chromatography (IC). However, XPS is a surface-sensitive method while IC is bulk-sensitive and differences are observed for species that preferentially partition to the surface or the bulk. Element-selective surface enhancement of Cl− is observed, likely caused by the presence of SO42−. In addition, Mg2+ is concentrated on the surface while Na+ is relatively depleted in the surface layer. Hence, the cations (Na+ and Mg2+) and the anions (Cl− and SO42−) show competitive correlations. At elevated relative humidity (RH), no major spectral changes were observed in the XPS results, except for the growth of an oxygen component originating from condensed H2O. Near-edge X-ray absorption fine structure (NEXAFS) measurements show that the magnesium and sodium spectra are sensitive to the presence of water, and the results imply that the surface is fully solvated already at RH = 5%. The surface solvation is also fully reversible as the RH is reduced. No major differences are observed between sample types and sample locations, indicating that the salts originated from saline lakes commonly have solvated surfaces under the environmental conditions on Earth.
  •  
3.
  • Li, Jun, et al. (author)
  • Hygroscopicity and Ice Nucleation Properties of Dust/Salt Mixtures Originating from the Source of East Asian Dust Storms
  • 2022
  • In: Frontiers in Environmental Science. - : Frontiers Media SA. - 2296-665X. ; 10
  • Journal article (peer-reviewed)abstract
    • Dust storms are common meteorological events that occur frequently in the late spring and early summer in arid and semi-arid areas. The resulting lofted dust and salt mixtures can impact atmospheric chemistry and climate systems through the many pathways represented by aerosol-cloud-climate interactions. In this study, dust/salt samples were collected from important sources of the East Asian dust storm, including the Badain Jaran Desert, the Tengger Desert and the Ulan Buh Desert in northwestern China. Ion chromatography (IC) measurements were performed to determine the concentrations of cations and anions. The ionic concentrations, pH and dissolvable fractions of sand samples show a positive correlation, indicating that the dissolved content is rich in alkaline ions. A positive matrix factorization (PMF) receptor model was employed to analyze the IC results, and from the PMF solutions non-obvious connections to local geography emerge. The results of hygroscopic experiments of sand samples which were measured by a vapor sorption analyzer indicate that the hygroscopicity may be related to the soluble content of samples, and the observed hygroscopic behavior can be well described by a thermodynamic model. The morphology of individual particles was chemically mapped by the synchrotron-based scanning transmission X-ray microscopy, and needle-shaped CaCO3 particles were observed to adhere to more irregular high K-containing particles. Moreover, a continuous flow diffusion chamber was used to investigate the ice nucleation abilities of typical salts, with both homogeneous freezing and deposition nucleation being observed. The results indicate that the salts primarily act as cloud condensation nuclei but can also act as ice nucleating particles at low temperatures.
  •  
4.
  • Yue, Siyao, et al. (author)
  • Brown carbon from biomass burning imposes strong circum-Arctic warming
  • 2022
  • In: ONE EARTH. - : Elsevier BV. - 2590-3330 .- 2590-3322. ; 5:3, s. 293-304
  • Journal article (peer-reviewed)abstract
    • Rapid warming in the Arctic has a huge impact on the global environment. Atmospheric brown carbon (BrC) is one of the least understood and uncertain warming agents due to a scarcity of observations. Here, we performed direct observations of atmospheric BrC and quantified its light-absorbing properties during a 2 month circum-Arctic cruise in summer of 2017. Through observation-constrained modeling, we show that BrC, mainly originated from biomass burning in the mid-to high latitudes of the Northern Hemisphere (similar to 60%), can be a strong warming agent in the Arctic region, especially in the summer, with an average radiative forcing of-90 mW m(-2) (similar to 30% relative to black carbon). As climate change is projected to increase the frequency, intensity, and spread of wildfires, we expect BrC to play an increasing role in Arctic warming in the future.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-4 of 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view