SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Liu Xinfeng) srt2:(2023)"

Search: WFRF:(Liu Xinfeng) > (2023)

  • Result 1-2 of 2
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Guo, Sihua, et al. (author)
  • Toward ultrahigh thermal conductivity graphene films
  • 2023
  • In: 2D Materials. - : IOP Publishing. - 2053-1583. ; 10:1
  • Journal article (peer-reviewed)abstract
    • With increasing demands of high-performance and functionality, electronics devices generate a great amount of heat. Thus, efficient heat dissipation is crucially needed. Owing to its extremely good thermal conductivity, graphene is an interesting candidate for this purpose. In this paper, a two-step temperature-annealing process to fabricate ultrahigh thermal conductive graphene assembled films (GFs) is proposed. The thermal conductivity of the obtained GFs was as high as 3826 +/- 47 W m(-1) K-1. Extending the time of high-temperature annealing significantly improved the thermal performance of the GF. Structural analyses confirmed that the high thermal conductivity is caused by the large grain size, defect-free stacking, and high flatness, which are beneficial for phonon transmission in the carbon lattice. The turbostratic stacking degree decreased with increasing heat treatment time. However, the increase in the grain size after long heat treatment had a more pronounced effect on the phonon transfer of the GF than that of turbostratic stacking. The developed GFs show great potential for efficient thermal management in electronics devices.
  •  
2.
  • Liu, Sirui, et al. (author)
  • Design of Hygroscopic Bioplastic Products Stable in Varying Humidities
  • 2023
  • In: Macromolecular materials and engineering. - : Wiley. - 1438-7492 .- 1439-2054. ; 308:2
  • Journal article (peer-reviewed)abstract
    • Hygroscopic biopolymers like proteins and polysaccharides suffer from humidity-dependent mechanical properties. Because humidity can vary significantly over the year, or even within a day, these polymers will not generally have stable properties during their lifetimes. On wheat gluten, a model highly hygroscopic biopolymer material, it is observed that larger/thicker samples can be significantly more mechanically stable than thinner samples. It is shown here that this is due to slow water diffusion, which, in turn, is due to the rigid polymer structure caused by the double-bond character of the peptide bond, the many bulky peptide side groups, and the hydrogen bond network. More than a year is required to reach complete moisture saturation (≈10 wt.%) in a 1 cm thick plate of glycerol-plasticized wheat gluten, whereas this process takes only one day for a 0.5 mm thick plate. The overall moisture uptake is also retarded by swelling-induced mechanical effects. Hence, hygroscopic biopolymers are better suited for larger/thicker products, where the moisture-induced changes in mechanical properties are smeared out over time, to the extent that the product remains sufficiently tough over climate changes, for example, throughout the course of a year.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-2 of 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view