SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Loader N. J.) srt2:(2010-2014)"

Search: WFRF:(Loader N. J.) > (2010-2014)

  • Result 1-4 of 4
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Bodin, Per, et al. (author)
  • Comparing the performance of different stomatal conductance models using modelled and measured plant carbon isotope ratios (δ(13) C): implications for assessing physiological forcing
  • 2013
  • In: Global Change Biology. - : Wiley. - 1354-1013. ; 19:6, s. 1709-1719
  • Journal article (peer-reviewed)abstract
    • Accurate modelling of long-term changes in plant stomatal functioning is vital to global climate change studies because changes in evapotranspiration influence temperature via physiological forcing of the climate. Various stomatal models are included in land surface schemes, but their robustness over longer timescales is difficult to validate. We compare the performance of three stomatal models, varying in their degree of complexity, and coupled to a land surface model. This is done by simulating the carbon isotope ratio of tree leaves (δ(13) Cleaf ) over a period of 53 years, and comparing the results with carbon isotope ratios obtained from tree rings (δ(13) Cstem ) measured at six sites in northern Europe. All three stomatal models fail to capture the observed inter-annual variability in the measured δ(13) Cstem time series. However, the Soil-Plant-Atmosphere (SPA) model performs significantly better than the Ball-Berry (BB) or COX models when tested for goodness of fit against measured δ(13) Cstem . The δ(13) Cleaf time series simulated using the SPA model are significantly positively correlated (p < 0.05) with measured results over the full time period tested, at all six sites. The SPA model underestimates inter-annual variability measured in δ(13) Cstem , but is no worse than the BB model and significantly better than the COX model. The inability of current models to adequately replicate changes in stomatal response to rising levels of CO2 concentrations, and thus to quantify the associated physiological forcing, warrants further investigation. © 2013 Blackwell Publishing Ltd.
  •  
2.
  • McCarroll, D., et al. (author)
  • A 1200-year multiproxy record of tree growth and summer temperature at the northern pine forest limit of Europe
  • 2013
  • In: Holocene. - : SAGE Publications. - 0959-6836 .- 1477-0911. ; 23:4, s. 471-484
  • Journal article (peer-reviewed)abstract
    • Combining nine tree growth proxies from four sites, from the west coast of Norway to the Kola Peninsula of NW Russia, provides a well replicated (> 100 annual measurements per year) mean index of tree growth over the last 1200 years that represents the growth of much of the northern pine timberline forests of northern Fennoscandia. The simple mean of the nine series, z-scored over their common period, correlates strongly with mean June to August temperature averaged over this region (r = 0.81), allowing reconstructions of summer temperature based on regression and variance scaling. The reconstructions correlate significantly with gridded summer temperatures across the whole of Fennoscandia, extending north across Svalbard and south into Denmark. Uncertainty in the reconstructions is estimated by combining the uncertainty in mean tree growth with the uncertainty in the regression models. Over the last seven centuries the uncertainty is < 4.5% higher than in the 20th century, and reaches a maximum of 12% above recent levels during the 10th century. The results suggest that the 20th century was the warmest of the last 1200 years, but that it was not significantly different from the 11th century. The coldest century was the 17th. The impact of volcanic eruptions is clear, and a delayed recovery from pairs or multiple eruptions suggests the presence of some positive feedback mechanism. There is no clear and consistent link between northern Fennoscandian summer temperatures and solar forcing.
  •  
3.
  • Loader, N. J., et al. (author)
  • Stable carbon isotopes from Tornetrask, northern Sweden provide a millennial length reconstruction of summer sunshine and its relationship to Arctic circulation
  • 2013
  • In: Quaternary Science Reviews. - : Elsevier BV. - 0277-3791 .- 1873-457X. ; 62, s. 97-113
  • Journal article (peer-reviewed)abstract
    • This paper presents results from the first 1100 years of a long stable carbon isotope chronology currently in development from Scots Pine (Pinus sylvestris L.) trees growing in the Tornetrask region of northern Sweden. The isotope record currently comprises a total of 74 trees with a mean annual replication of >12, thereby enabling it to be compared directly with other tree-ring based palaeoclimate reconstructions from this region. In developing the reconstruction, several key topics in isotope dendroclimatology (chronology construction, replication, CO2 adjustment and age trends) were addressed. The resulting carbon isotope series is calibrated against instrumental data from the closest meteorological station at Abisko (AD1913-2008) to provide a record of June August sunshine for northern Fennoscandia. This parameter is closely linked to the direct control of assimilation rate; Photosynthetically Active Radiation (PAR) and the indirect measures; mean July August temperature and percent cloud cover. The coupled response of summer sunshine and temperature in this region permits a multiparameter comparison with a local reconstruction of past temperature variability based upon tree growth proxies to explore the stability of this coupling through time. Several periods are identified where the temperature (X-ray density) and sunshine (stable carbon isotope ratio) records diverge. The most significant and sustained of these occur between c AD1200-1380 and c AD1550-1780, providing evidence for a cool, sunny, two-phase Little Ice Age. Whilst summer sunshine reconstructed for the 20th century is significantly different from the mean of the last 1100 years (P < 0.01), conditions during the early medival period are similar to those experienced in northern Fennoscandia during the 20th century (P > 0.01), so it is the 17th-18th, and to a lesser extent, the 13th centuries rather than the early medival period that appear anomalous when viewed within the context of the last 1100 years. The observed departures between temperature and sunshine are interpreted as indicating a change in large-scale circulation associated with a southward migration of the Polar Front. Such a change, affecting the Northern Annular Mode (Arctic Oscillation) would result in more stable anticyclonic conditions (cool, bright, summers) over northern Fennoscandia, thus providing a testable mechanism for the development of a multi-phase, time-transgressive Little Ice Age across Europe.
  •  
4.
  • Wilson, R., et al. (author)
  • Reconstructing Holocene climate from tree rings : The potential for a long chronology from the Scottish Highlands
  • 2012
  • In: The Holocene. - : SAGE Publications. - 0959-6836 .- 1477-0911. ; 22:1, s. 3-11
  • Journal article (peer-reviewed)abstract
    • Despite promising research in the 1980s showing the potential of Scots pine (Pinus sylvestris L.) for the reconstruction of past summer temperatures in the Scottish Highlands, little dendroclimatic work has been attempted in this region since. This reflects, in part, the limited number of sparsely distributed remnant natural/ semi-natural pine woodlands in the Scottish Highlands and the lack of old growth forest therein. On average, most of the pine trees dated in this region are around 225 years in age. Here, we present the first results of an ongoing interdisciplinary initiative to develop a long Scottish chronology through the acquisition of modern, historical and subfossil pine material from the native pinewoods, historic structures and lakes of the Scottish Highlands. Radiocarbon dating of 25 subfossil pine timbers recovered from lake sediments identified the presence of preserved material covering the last 8000 years with initial clusters focused on the last two millennia and early-mid Holocene. Although developing a well-replicated 8000 year pine chronology will take many years, this preliminary study indicates that a millennial length pine chronology from the northwest Cairngorm region is a feasible and realistic objective in the near future. The importance of such a record in this climatically important sector of northwest Europe cannot be underestimated.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-4 of 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view