SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Looman Camilla) srt2:(2003)"

Search: WFRF:(Looman Camilla) > (2003)

  • Result 1-3 of 3
Sort/group result
   
EnumerationReferenceCoverFind
1.
  •  
2.
  • Looman, Camilla, 1977- (author)
  • The ABC of KRAB zinc finger proteins
  • 2003
  • Doctoral thesis (other academic/artistic)abstract
    • All living organisms consist of cells and the identity of a cell is defined by the genes it expresses. To assure proper function, a cell receives continuous information on which genes to turn on and off. This information is, to a large extent, provided by transcription factors. Krüppel-related zinc finger proteins probably constitute the largest family of transcription factors in mammals and many of these proteins carry a potent repressor domain called Krüppel-associated box (KRAB). The human genome alone encodes more than 200 KRAB zinc finger proteins but still very little is known about their biological functions. The Krüppel-related zinc finger genes appear to have been involved in a massive expansion throughout evolution. To unravel some of the secrets underlying this evolutionary success, we studied the molecular evolution of KRAB zinc finger genes. We show that the frequently occurring duplications of these genes are accompanied by a low sequence constraint in their zinc finger region. In addition, we show that the number of zinc finger motifs carried within these proteins is far from fixed. New zinc finger motifs are frequently added while others are inactivated or even discarded from the coding region. The structurally independent Krüppel zinc finger motif has, through these mechanisms, served as a highly adaptive building block for the generation of new transcriptional regulators. The mouse, rat and human genomes carry four different variants of the KRAB domain – KRAB(AB), KRAB(Ab), KRAB(AC) and KRAB(A). This thesis presents the identification of a novel KRAB domain, KRAB C, as well as a functional analysis of the different KRAB domains. We conclude that all different KRAB domains share a common co-repressor, TIFβ, and effectively repress transcription. These functions are mainly mediated by the KRAB A box but are clearly influenced by the presence of a KRAB B, b or C box. Furthermore, we show that all KRAB zinc finger gene subfamilies originate from the KRAB(AB) zinc finger genes.In addition, this thesis includes a structural and functional analysis of four novel mouse and human KRAB zinc finger genes; MZF6D, HKr18, HKr19 and HZF12. Whereas HKr18 and HZF12 seem to be ubiquitously expressed, MZF6D and HKr19 show a more restricted expression pattern. Northern blot and in situ hybridisation analyses of MZF6D showed that the expression of this gene is restricted to meiotic germ cells. MZF6D might thus be involved in the formation of male gametes. The expression of HKr19, on the other hand, seems to be restricted to lymphoid cells, indicating a possible role for this KRAB zinc finger gene in the regulation of lineage commitment.
  •  
3.
  • Persdotter Hedlund, Gabriella, et al. (author)
  • Fetal antigen 1 (FA1) in the adult rat adrenal gland, ovary and pituitary gland
  • 2003
  • In: In Vivo. - 0258-851X .- 1791-7549. ; 17:1, s. 1-4
  • Journal article (peer-reviewed)abstract
    • Fetal antigen 1 (FA1) is a circulating glycoprotein containing six epidermal growth factor (EGF)-like repeats. FA1's larger membrane-bound precursor is defined by the cDNAs referred to as either human delta-like (dlk) or human adrenal specific cDNA, pG2. In rodents FA1 has also been studied under the names of preadipocyte factor 1 (Pref-1), and zona glomerulosa-specific factor (ZOG). FA1 is abundantly expressed in fetal tissues, but in the mature cells of the adult organism the tissue presence of the protein seems to be restricted to neuroendocrine tissues. The present study demonstrates FA1 localisation in endocrine tissues of the adult female rat in which the protein was found present in the medulla and the zona glomerulosa of the cortex of the adrenal glands, in the pars distalis of the adenohypophysis, and in the ovarian granulosa lutein cells. No staining was found in the pancreas, which is in contrast to what has been described in the human.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-3 of 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view