SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Lundberg TR) srt2:(2016)"

Search: WFRF:(Lundberg TR) > (2016)

  • Result 1-4 of 4
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Lundberg, TR, et al. (author)
  • Aerobic exercise augments muscle transcriptome profile of resistance exercise
  • 2016
  • In: American journal of physiology. Regulatory, integrative and comparative physiology. - : American Physiological Society. - 1522-1490 .- 0363-6119. ; 310:11, s. R1279-R1287
  • Journal article (peer-reviewed)abstract
    • Recent reports suggest that aerobic exercise may boost the hypertrophic response to short-term resistance training. This study explored the effects of an acute aerobic exercise bout on the transcriptional response to subsequent resistance exercise. Ten moderately trained men performed ∼45 min cycling on one leg followed by 4 × 7 maximal knee extensions for each leg, 15 min later. Thus, one limb performed aerobic and resistance exercise (AE + RE) while the opposing leg did resistance exercise only (RE). Biopsies were obtained from the vastus lateralis muscle of each leg 3 h after the resistance exercise bout. Using DNA microarray, we analyzed differences [≥1.5-fold, false discovery rate (FDR) ≤10%] in gene expression profiles for the two modes of exercise. There were 176 genes up (127)- or downregulated (49) by AE + RE compared with RE. Among the most significant differentially expressed genes were established markers for muscle growth and oxidative capacity, novel cytokines, transcription factors, and micro-RNAs (miRNAs). The most enriched functional categories were those linked to carbohydrate metabolism and transcriptional regulation. Upstream analysis revealed that vascular endothelial growth factor, cAMP-response element-binding protein, Tet methylcytosine dioxygenase, and mammalian target of rapamycin were regulators highly activated by AE + RE, whereas JnK, NF-κβ, MAPK, and several miRNAs were inhibited. Thus, aerobic exercise alters the skeletal muscle transcriptional signature of resistance exercise to initiate important gene programs promoting both myofiber growth and improved oxidative capacity. These results provide novel insight into human muscle adaptations to diverse exercise modes and offer the very first genomic basis explaining how aerobic exercise may augment, rather than compromise, muscle growth induced by resistance exercise.
  •  
2.
  •  
3.
  •  
4.
  • Tesch, PA, et al. (author)
  • Unilateral lower limb suspension: From subject selection to "omic" responses
  • 2016
  • In: Journal of applied physiology (Bethesda, Md. : 1985). - : American Physiological Society. - 1522-1601 .- 8750-7587. ; 120:10, s. 1207-1214
  • Journal article (peer-reviewed)abstract
    • The unilateral lower limb suspension (ULLS) method was developed, introduced, and validated in the quest for a simple, effective, and highly reliable human analog to study the consequences of spaceflight on muscle size and function. Because withdrawal of weight bearing for no more than 2–3 days is sufficient to inflict disturbances in protein metabolism of postural muscles, it is imperative ULLS serves as a very powerful method to manifest skeletal muscle adaptations similar to those experienced in 0 g. Thus the rate of global muscle loss appears rather constant over the first 2 mo, amounting to about 2–3% per week. At the microscopic level, these changes are accompanied by a corresponding decrease in individual muscle fiber size. ULLS alters metabolism favoring more carbohydrate over fat substrate utilization. Altogether, these changes result in impaired work and endurance capacity of muscles being subjected to ULLS. Maximal voluntary force decreases out of proportion to the muscle loss, suggesting motor control is modified. Past reviews offer near exhaustive information on ULLS-induced responses with regard to the above changes. Hence, the current brief review describes more broadly the evolution of the ULLS model, from issues of subject recruitment and compliance control, to recent advances unraveling molecular mechanisms facilitating unloading-induced muscle wasting. Such knowledge is critical in designing future studies aimed at exploring and developing exercise countermeasures or other means to combat the debilitating effects on muscle experienced by astronauts during long-haul missions in Orbit.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-4 of 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view