SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Lundholm Ida) srt2:(2015)"

Search: WFRF:(Lundholm Ida) > (2015)

  • Result 1-2 of 2
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Lundholm, Ida, 1986 (author)
  • Terahertz radiation as a pump and probe for studying low frequency vibrations in proteins
  • 2015
  • Doctoral thesis (other academic/artistic)abstract
    • Many functionally important structural changes in proteins proceed along the direction of their lowest frequency vibrations. These vibrations correspond to picosecond collective dynamics. Establishing the fundamental relationship between these vibrations and protein function remains a challenge within biophysics. Electromagnetic radiation in the terahertz frequency range (0.1-10 THz) can excite collective picosecond vibrations which makes it suitable as a probe for direct observation as well as a pump for the selection of functionally relevant vibrations for detection by other methods. The use of terahertz radiation for biological applications is hampered by several technical difficulties such as water absorption and thermal effects. For these reasons, method development is an important aspect when applying terahertz radiation to biological problems. In this work, terahertz radiation has been used to identify and characterize low frequency vibrations in three different proteins by applying both novel experimental design and analysis methods. Terahertz absorption spectroscopy was used to identify the change in collective dynamics upon photoactivation of a photosynthetic reaction centre. The collective vibrations were of non thermal origin and localized to the chromophore containing subunits implying the involvement of collective dynamics in photosynthesis. By combining X-ray crystallography with 0.4 THz excitation the presence of collective dynamics was detected in both lysozyme and thermolysin. In lysozyme, the vibrational mode was localized to a central α-helix. The vibrational mode had a lifetime longer than expected which most likely arise from a hypothetical Fröhlich condensation process not previously observed. The interaction of terahertz radiation with thermolysin was identified through a Bayesian statistical analysis of X-ray diffraction data.
  •  
2.
  • Lundholm, Ida, 1986, et al. (author)
  • Terahertz radiation induces non-thermal structural changes associated with Fröhlich condensation in a protein crystal
  • 2015
  • In: Structural Dynamics. - : AIP Publishing. - 2329-7778 .- 2329-7778. ; 2:5
  • Journal article (peer-reviewed)abstract
    • Whether long-range quantum coherent states could exist in biological systems, and beyond low-temperature regimes where quantum physics is known to be applicable, has been the subject to debate for decades. It was proposed by Fröhlich that vibrational modes within protein molecules can order and condense into a lowest-frequency vibrational mode in a process similar to Bose-Einstein condensation, and thus that macroscopic coherence could potentially be observed in biological systems. Despite the prediction of these so-called Fröhlich condensates almost five decades ago, experimental evidence thereof has been lacking. Here, we present the first experimental observation of Fröhlich condensation in a protein structure. To that end, and to overcome the challenges associated with probing low-frequency molecular vibrations in proteins (which has hampered understanding of their role in proteins’ function), we combined terahertz techniques with a highly sensitive X-ray crystallographic method to visualize low-frequency vibrational modes in the protein structure of hen-egg white lysozyme. We found that 0.4 THz electromagnetic radiation induces non-thermal changes in electron density. In particular, we observed a local increase of electron density in a long a-helix motif consistent with a subtle longitudinal compression of the helix. These observed electron density changes occur at a low absorption rate indicating that thermalization of terahertz photons happens on a micro- to milli-second time scale, which is much slower than the expected nanosecond time scale due to damping of delocalized low frequency vibrations. Our analyses show that the micro- to milli-second life time of the vibration can only be explained by Fröhlich condensation, a phenomenon predicted almost half a century ago, yet never experimentally confirmed.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-2 of 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view