SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Lutz Bueno Viviane) srt2:(2021)"

Search: WFRF:(Lutz Bueno Viviane) > (2021)

  • Result 1-3 of 3
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Liebi, Marianne, 1984, et al. (author)
  • 3D nanoscale analysis of bone healing around degrading Mg implants evaluated by X-ray scattering tensor tomography
  • 2021
  • In: Acta Biomaterialia. - : Elsevier BV. - 1878-7568 .- 1742-7061. ; 134, s. 804-817
  • Journal article (peer-reviewed)abstract
    • The nanostructural adaptation of bone is crucial for its biocompatibility with orthopedic implants. The bone nanostructure also determines its mechanical properties and performance. However, the bone's temporal and spatial nanoadaptation around degrading implants remains largely unknown. Here, we present insights into this important bone adaptation by applying scanning electron microscopy, elemental analysis, and small-angle X-ray scattering tensor tomography (SASTT). We extend the novel SASTT reconstruction method and provide a 3D scattering reciprocal space map per voxel of the sample's volume. From this reconstruction, parameters such as the thickness of the bone mineral particles are quantified, which provide additional information on nanostructural adaptation of bone during healing. We selected a rat femoral bone and a degrading ZX10 magnesium implant as model system, and investigated it over the course of 18 months, using a sham as control. We observe that the bone's nanostructural adaptation starts with an initially fast interfacial bone growth close to the implant, which spreads by a re-orientation of the nanostructure in the bone volume around the implant, and is consolidated in the later degradation stages. These observations reveal the complex bulk bone-implant interactions and enable future research on the related biomechanical bone responses. Statement of significance: Traumatic bone injuries are among the most frequent causes of surgical treatment, and often require the placement of an implant. The ideal implant supports and induces bone formation, while being mechanically and chemically adapted to the bone structure, ensuring a gradual load transfer. While magnesium implants fulfill these requirements, the nanostructural changes during bone healing and implant degradation remain not completely elucidated. Here, we unveil these processes in rat femoral bones with ZX10 magnesium implants and show different stages of bone healing in such a model system.
  •  
2.
  • Rodriguez Palomo, Adrian, 1992, et al. (author)
  • In Situ Visualization of the Structural Evolution and Alignment of Lyotropic Liquid Crystals in Confined Flow
  • 2021
  • In: Small. - : Wiley. - 1613-6810 .- 1613-6829. ; 17:7
  • Journal article (peer-reviewed)abstract
    • Self‐assembled materials such as lyotropic liquid crystals offer a wide variety of structures and applications by tuning the composition. Understanding materials behavior under flow and the induced alignment is wanted in order to tailor structure related properties. A method to visualize the structure and anisotropy of ordered systems in situ under dynamic conditions is presented where flow‐induced nanostructural alignment in microfluidic channels is observed by scanning small angle X‐ray scattering in hexagonal and lamellar self‐assembled phases. In the hexagonal phase, the material in regions with high extensional flow exhibits orientation perpendicular to the flow and is oriented in the flow direction only in regions with a high enough shear rate. For the lamellar phase, a flow‐induced morphological transition occurs from aligned lamellae toward multilamellar vesicles. However, the vesicles do not withstand the mechanical forces and break in extended lamellae in regions with high shear rates. This evolution of nanostructure with different shear rates can be correlated with a shear thinning viscosity curve with different slopes. The results demonstrate new fundamental knowledge about the structuring of liquid crystals under flow. The methodology widens the quantitative investigation of complex structures and identifies important mechanisms of reorientation and structural changes.
  •  
3.
  • Rodriguez Palomo, Adrian, 1992, et al. (author)
  • Nanostructure and anisotropy of 3D printed lyotropic liquid crystals studied by scattering and birefringence imaging
  • 2021
  • In: Additive Manufacturing. - : Elsevier BV. - 2214-8604. ; 47
  • Journal article (peer-reviewed)abstract
    • Extrusion-based 3D printing of hexagonal and lamellar lyotropic liquid crystals is a powerful technique to produce hierarchical materials with well-defined anisotropic structure. Tailoring the properties of 3D printed objects requires a precise control of the nanostructure; however, a sufficiently high degree of anisotropy is often not achieved. In this study, scanning small angle X-ray scattering was performed in situ at the exit of the needle during 3D printing. We study the induced anisotropy and nanostructure in hexagonal and lamellar lyotropic liquid crystals. Mapping of extruded filaments during printing revealed that narrower nozzle diameters (370 μm) resulted in less anisotropic structures with a wider distribution of orientation angles across the cross section, while larger nozzle diameters (550 μm) resulted in more anisotropic structures with an overall higher degree of orientation. The wall shear rate is higher for the narrower nozzle, which produces wall slip, resulting in a highly anisotropic shell, and a less aligned filament core. Further examination of the filaments revealed phase transitions due to solvent evaporation. The time scales were of 10 – 20 min of exposure to atmospheric conditions. Simultaneously, a loss in the macroscopic anisotropy of the hexagonal self-assembled structure was observed. These processes occur during and after extrusion-based 3D printing of liquid crystals and limit the fine control of the final structure. The variability of structures achieved for our different systems highlights the importance of structural characterization during and after extrusion to guarantee high anisotropy and well-defined structures.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-3 of 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view