SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Månberg Anna 1985 ) srt2:(2022)"

Search: WFRF:(Månberg Anna 1985 ) > (2022)

  • Result 1-7 of 7
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Lauren, Ida, et al. (author)
  • Long-term SARS-CoV-2-specific and cross-reactive cellular immune responses correlate with humoral responses, disease severity, and symptomatology
  • 2022
  • In: Immunity, Inflammation and Disease. - : John Wiley & Sons. - 2050-4527. ; 10:4
  • Journal article (peer-reviewed)abstract
    • Background: Cellular immune memory responses post coronavirus disease 2019 (COVID-19) have been difficult to assess due to the risks of contaminating the immune response readout with memory responses stemming from previous exposure to endemic coronaviruses. The work herein presents a large-scale long-term follow-up study investigating the correlation between symptomology and cellular immune responses four to five months post seroconversion based on a unique severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-specific peptide pool that contains no overlapping peptides with endemic human coronaviruses. Methods: Peptide stimulated memory T cell responses were assessed with dual interferon-gamma (IFN gamma) and interleukin (IL)-2 Fluorospot. Serological analyses were performed using a multiplex antigen bead array. Results: Our work demonstrates that long-term SARS-CoV-2-specific memory T cell responses feature dual IFN gamma and IL-2 responses, whereas cross-reactive memory T cell responses primarily generate IFN gamma in response to SARS-CoV-2 peptide stimulation. T cell responses correlated to long-term humoral immune responses. Disease severity as well as specific COVID-19 symptoms correlated with the magnitude of the SARS-CoV-2-specific memory T cell response four to five months post seroconversion. Conclusion: Using a large cohort and a SARS-CoV-2-specific peptide pool we were able to substantiate that initial disease severity and symptoms correlate with the magnitude of the SARS-CoV-2-specific memory T cell responses.
  •  
2.
  • Bradley, Frideborg, et al. (author)
  • Multi-omics analysis of the cervical epithelial integrity of women using depot medroxyprogesterone acetate
  • 2022
  • In: PLoS Pathogens. - : Public Library of Science (PLoS). - 1553-7366 .- 1553-7374. ; 18:5
  • Journal article (peer-reviewed)abstract
    • Depot medroxyprogesterone acetate (DMPA) is an injectable hormonal contraceptive used by millions of women worldwide. However, experimental studies have associated DMPA use with genital epithelial barrier disruption and mucosal influx of human immunodeficiency virus (HIV) target cells. We explored the underlying molecular mechanisms of these findings. Ectocervical biopsies and cervicovaginal lavage (CVL) specimens were collected from HIV-seronegative Kenyan sex workers using DMPA (n = 32) or regularly cycling controls (n = 64). Tissue samples were assessed by RNA-sequencing and quantitative imaging analysis, whereas protein levels were measured in CVL samples. The results suggested a DMPA-associated upregulation of genes involved in immune regulation, including genes associated with cytokine-mediated signaling and neutrophil-mediated immunity. A transcription factor analysis further revealed DMPA-associated upregulation of RELA and NFKB1 which are involved in several immune activation pathways. Several genes significantly downregulated in the DMPA versus the control group were involved in epithelial structure and function, including genes encoding keratins, small proline-rich proteins, and cell-cell adhesion proteins. Pathway analyses indicated DMPA use was associated with immune activation and suppression of epithelium development, including keratinization and cornification processes. The cervicovaginal microbiome composition (Lactobacillus dominant and non-Lactobacillus dominant) had no overall interactional impact on the DMPA associated tissue gene expression. Imaging analysis verified that DMPA use was associated with an impaired epithelial layer as illustrated by staining for the selected epithelial junction proteins E-cadherin, desmoglein-1 and claudin-1. Additional staining for CD4(+) cells revealed a more superficial location of these cells in the ectocervical epithelium of DMPA users versus controls. Altered protein levels of SERPINB1 and ITIH2 were further observed in the DMPA group. Identification of specific impaired epithelial barrier structures at the gene expression level, which were verified at the functional level by tissue imaging analysis, illustrates mechanisms by which DMPA adversely may affect the integrity of the genital mucosa. Author summarySexual transmission accounts for the majority of all new HIV infections in women, and alterations to the mucosal environment of the female genital tract have been associated with an increase in the risk of acquiring HIV. Observational epidemiological studies have implied that the use of the injectable hormonal contraceptive depot medroxyprogesterone acetate (DMPA) may be associated with increased HIV-acquisition. However, a prospective clinical study has not confirmed this association and the controversial findings are currently evaluated in the context of international reproductive health policies. Several studies using various model systems indicate that DMPA affects the integrity of the genital epithelial barrier as well as the mucosal immune system, but the exact mechanisms remain largely unknown. To characterize the effect of DMPA on the genital mucosal environment, we used a multi-omics approach to assess paired genital secretions and cervical tissue samples from long-term regular DMPA users living in Kenya. This unique cohort represents a population at risk of HIV infection in which DMPA is one of the most commonly used hormonal contraceptives. We identified impaired cervical epithelial barrier structures, including DMPA-associated reduction in the expression of cell-cell adhesion molecules, keratins, small proline-rich proteins and a thinner upper epithelial layer with more superficially located CD4(+) cells. Gene set enrichment pathway analyses indicated DMPA use was associated with immune activation and suppression of epithelium development including keratinization and cornification pathways. Protein analysis identified altered levels of selected anti-proteases. Our findings illustrate mechanisms by which DMPA adversely may affect the integrity of the genital mucosa.
  •  
3.
  • Havervall, Sebastian, et al. (author)
  • Robust humoral and cellular immune responses and low risk for reinfection at least 8 months following asymptomatic to mild COVID-19
  • 2022
  • In: Journal of Internal Medicine. - : John Wiley & Sons. - 0954-6820 .- 1365-2796. ; 291:1, s. 72-80
  • Journal article (peer-reviewed)abstract
    • Background: Emerging data support detectable immune responses for months after severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and vaccination, but it is not yet established to what degree and for how long protection against reinfection lasts.Methods: We investigated SARS-CoV-2-specific humoral and cellular immune responses more than 8 months post-asymptomatic, mild and severe infection in a cohort of 1884 healthcare workers (HCW) and 51 hospitalized COVID-19 patients. Possible protection against SARS-CoV-2 reinfection was analyzed by a weekly 3-month polymerase chain reaction (PCR) screening of 252 HCW that had seroconverted 7 months prior to start of screening and 48 HCW that had remained seronegative at multiple time points.Results: All COVID-19 patients and 96% (355/370) of HCW who were anti-spike IgG positive at inclusion remained anti-spike IgG positive at the 8-month follow-up. Circulating SARS-CoV-2-specific memory T cell responses were detected in 88% (45/51) of COVID-19 patients and in 63% (233/370) of seropositive HCW. The cumulative incidence of PCR-confirmed SARS-CoV-2 infection was 1% (3/252) among anti-spike IgG positive HCW (0.13 cases per 100 weeks at risk) compared to 23% (11/48) among anti-spike IgG negative HCW (2.78 cases per 100 weeks at risk), resulting in a protective effect of 95.2% (95% CI 81.9%-99.1%).Conclusions: The vast majority of anti-spike IgG positive individuals remain anti-spike IgG positive for at least 8 months regardless of initial COVID-19 disease severity. The presence of anti-spike IgG antibodies is associated with a substantially reduced risk of reinfection up to 9 months following asymptomatic to mild COVID-19.
  •  
4.
  • Havervall, Sebastian, et al. (author)
  • SARS-CoV-2 induces a durable and antigen specific humoral immunity after asymptomatic to mild COVID-19 infection
  • 2022
  • In: PLOS ONE. - : Public Library of Science (PLoS). - 1932-6203. ; 17:1, s. e0262169-e0262169
  • Journal article (peer-reviewed)abstract
    • Current SARS-CoV-2 serological assays generate discrepant results, and the longitudinal characteristics of antibodies targeting various antigens after asymptomatic to mild COVID-19 are yet to be established. This longitudinal cohort study including 1965 healthcare workers, of which 381 participants exhibited antibodies against the SARS-CoV-2 spike antigen at study inclusion, reveal that these antibodies remain detectable in most participants, 96%, at least four months post infection, despite having had no or mild symptoms. Virus neutralization capacity was confirmed by microneutralization assay in 91% of study participants at least four months post infection. Contrary to antibodies targeting the spike protein, antibodies against the nucleocapsid protein were only detected in 80% of previously anti-nucleocapsid IgG positive healthcare workers. Both anti-spike and anti-nucleocapsid IgG levels were significantly higher in previously hospitalized COVID-19 patients four months post infection than in healthcare workers four months post infection (p = 2*10−23 and 2*10−13 respectively). Although the magnitude of humoral response was associated with disease severity, our findings support a durable and functional humoral response after SARS-CoV-2 infection even after no or mild symptoms. We further demonstrate differences in antibody kinetics depending on the antigen, arguing against the use of the nucleocapsid protein as target antigen in population-based SARS-CoV-2 serological surveys
  •  
5.
  •  
6.
  • Kläppe, U., et al. (author)
  • Cardiac troponin T is elevated and increases longitudinally in ALS patients
  • 2022
  • In: Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration. - : Taylor and Francis Ltd.. - 2167-8421 .- 2167-9223. ; 23:1-2, s. 58-65
  • Journal article (peer-reviewed)abstract
    • Objective: To test whether high-sensitivity cardiac troponin T (hs-cTnT) could act as a diagnostic or prognostic biomarker in ALS, comparing hs-cTnT to neurofilament light (NfL). Methods: We performed a case-control study, including 150 ALS patients, 28 ALS mimics, and 108 healthy controls, and a follow-up study of the ALS patients, during 2014–2020 in Stockholm, Sweden. We compared concentrations of hs-cTnT in plasma and NfL in the cerebrospinal fluid between cases and controls. To evaluate the diagnostic performance, we calculated the area under the curve (AUC). Hazard ratios (HRs) were estimated from Cox models to assess associations between hs-cTnT and NfL at ALS diagnosis and risk of death. The longitudinal analysis measured changes of hs-cTnT and NfL since ALS diagnosis. Results: We noted higher levels of hs-cTnT in ALS patients (median: 16.5 ng/L) than in ALS mimics (11 ng/L) and healthy controls (6 ng/L). Both hs-cTnT and NfL could distinguish ALS patients from ALS mimics, with higher AUC noted for NfL (AUC 0.88; 95%CI 0.79–0.97). Disease progression correlated weakly with hs-cTnT (Pearson’s r = 0.18, p = 0.04) and moderately with NfL (Pearson’s r = 0.41, p < 0.001). Shorter survival was associated with higher levels of NfL at diagnosis (HR 1.08, 95%CI 1.04–1.11), but not hs-cTnT. hs-cTnT increased (12.61 ng/L per year, 95%CI 7.14–18.06) whereas NfL decreased longitudinally since ALS diagnosis. Conclusions: NfL is a stronger diagnostic and prognostic biomarker than hs-cTnT for ALS. However, hs-cTnT might constitute a disease progression biomarker as it increases longitudinally. The underlying causes for this increase need to be investigated. 
  •  
7.
  • Mravinacová, Sára, et al. (author)
  • A cell-free high throughput assay for assessment of SARS-CoV-2 neutralizing antibodies
  • 2022
  • In: New Biotechnology. - : Elsevier BV. - 1871-6784 .- 1876-4347. ; 66, s. 46-52
  • Journal article (peer-reviewed)abstract
    • Highly accurate serological tests are key to assessing the prevalence of SARS-CoV-2 antibodies and the level of immunity in the population. This is important to predict the current and future status of the pandemic. With the recent emergence of new and more infectious SARS-CoV-2 variants, assays allowing for high throughput analysis of antibodies able to neutralize SARS-CoV-2 become even more important. Here, we report the development and validation of a robust, high throughput method, which enables the assessment of antibodies inhibiting the binding between the SARS-CoV-2 spike protein and angiotensin converting enzyme 2 (ACE2). The assay uses recombinantly produced spike-f and ACE2 and is performed in a bead array format, which allows analysis of up to 384 samples in parallel per instrument over seven hours, demanding only one hour of manual handling. The method is compared to a microneutralization assay utilising live SARS-CoV-2 and is shown to deliver highly correlating data. Further, a comparison with a serological method that measures all antibodies recognizing the spike protein shows that this type of assessment provides important insights into the neutralizing efficiency of the antibodies, especially for individuals with low antibody levels. This method can be an important and valuable tool for large-scale assessment of antibody-based neutralization, including neutralization of new spike variants that might emerge.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-7 of 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view