SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Martell S. L.) srt2:(2020-2024)"

Search: WFRF:(Martell S. L.) > (2020-2024)

  • Result 1-10 of 15
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Gilmore, G., et al. (author)
  • The Gaia-ESO Public Spectroscopic Survey : Motivation, implementation, GIRAFFE data processing, analysis, and final data products star
  • 2022
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 666
  • Journal article (peer-reviewed)abstract
    • Context. The Gaia-ESO Public Spectroscopic Survey is an ambitious project designed to obtain astrophysical parameters and elemental abundances for 100 000 stars, including large representative samples of the stellar populations in the Galaxy, and a well-defined sample of 60 (plus 20 archive) open clusters. We provide internally consistent results calibrated on benchmark stars and star clusters, extending across a very wide range of abundances and ages. This provides a legacy data set of intrinsic value, and equally a large wide-ranging dataset that is of value for the homogenisation of other and future stellar surveys and Gaia's astrophysical parameters. Aims. This article provides an overview of the survey methodology, the scientific aims, and the implementation, including a description of the data processing for the GIRAFFE spectra. A companion paper introduces the survey results. Methods. Gaia-ESO aspires to quantify both random and systematic contributions to measurement uncertainties. Thus, all available spectroscopic analysis techniques are utilised, each spectrum being analysed by up to several different analysis pipelines, with considerable effort being made to homogenise and calibrate the resulting parameters. We describe here the sequence of activities up to delivery of processed data products to the ESO Science Archive Facility for open use. Results. The Gaia-ESO Survey obtained 202 000 spectra of 115 000 stars using 340 allocated VLT nights between December 2011 and January 2018 from GIRAFFE and UVES. Conclusions. The full consistently reduced final data set of spectra was released through the ESO Science Archive Facility in late 2020, with the full astrophysical parameters sets following in 2022. A companion article reviews the survey implementation, scientific highlights, the open cluster survey, and data products.
  •  
2.
  • Randich, S., et al. (author)
  • The Gaia-ESO Public Spectroscopic Survey : Implementation, data products, open cluster survey, science, and legacy
  • 2022
  • In: Astronomy and Astrophysics. - : EDP SCIENCES S A. - 0004-6361 .- 1432-0746. ; 666
  • Journal article (peer-reviewed)abstract
    • Context. In the last 15 years different ground-based spectroscopic surveys have been started (and completed) with the general aim of delivering stellar parameters and elemental abundances for large samples of Galactic stars, complementing Gaia astrometry. Among those surveys, the Gaia-ESO Public Spectroscopic Survey, the only one performed on a 8m class telescope, was designed to target 100 000 stars using FLAMES on the ESO VLT (both Giraffe and UVES spectrographs), covering all the Milky Way populations, with a special focus on open star clusters. Aims. This article provides an overview of the survey implementation (observations, data quality, analysis and its success, data products, and releases), of the open cluster survey, of the science results and potential, and of the survey legacy. A companion article reviews the overall survey motivation, strategy, Giraffe pipeline data reduction, organisation, and workflow. Methods. We made use of the information recorded and archived in the observing blocks; during the observing runs; in a number of relevant documents; in the spectra and master catalogue of spectra; in the parameters delivered by the analysis nodes and the working groups; in the final catalogue; and in the science papers. Based on these sources, we critically analyse and discuss the output and products of the Survey, including science highlights. We also determined the average metallicities of the open clusters observed as science targets and of a sample of clusters whose spectra were retrieved from the ESO archive. Results. The Gaia-ESO Survey has determined homogeneous good-quality radial velocities and stellar parameters for a large fraction of its more than 110 000 unique target stars. Elemental abundances were derived for up to 31 elements for targets observed with UVES. Lithium abundances are delivered for about 1/3 of the sample. The analysis and homogenisation strategies have proven to be successful; several science topics have been addressed by the Gaia-ESO consortium and the community, with many highlight results achieved. Conclusions. The final catalogue will be released through the ESO archive in the first half of 2022, including the complete set of advanced data products. In addition to these results, the Gaia-ESO Survey will leave a very important legacy, for several aspects and for many years to come.
  •  
3.
  • Baratella, M., et al. (author)
  • The Gaia-ESO Survey : a new approach to chemically characterising young open clusters I. Stellar parameters, and iron-peak, alpha-, and proton-capture elements
  • 2020
  • In: Astronomy and Astrophysics. - : EDP SCIENCES S A. - 0004-6361 .- 1432-0746. ; 634
  • Journal article (peer-reviewed)abstract
    • Context: Open clusters are recognised as excellent tracers of Galactic thin-disc properties. At variance with intermediate-age and old open clusters, for which a significant number of studies is now available, clusters younger than less than or similar to 150 Myr have been mostly overlooked in terms of their chemical composition until recently (with few exceptions). On the other hand, previous investigations seem to indicate an anomalous behaviour of young clusters, which includes (but is not limited to) slightly sub-solar iron (Fe) abundances and extreme, unexpectedly high barium (Ba) enhancements.Aims: In a series of papers, we plan to expand our understanding of this topic and investigate whether these chemical peculiarities are instead related to abundance analysis techniques.Methods: We present a new determination of the atmospheric parameters for 23 dwarf stars observed by the Gaia-ESO survey in five young open clusters (tau < 150 Myr) and one star-forming region (NGC 2264). We exploit a new method based on titanium (Ti) lines to derive the spectroscopic surface gravity, and most importantly, the microturbulence parameter. A combination of Ti and Fe lines is used to obtain effective temperatures. We also infer the abundances of Fe I, Fe II, Tit, Tin,Na I, Mg I, Al I,Sit, Ca I, Cr I, and Ni I.Results: Our findings are in fair agreement with Gaia-ESO iDR5 results for effective temperatures and surface gravities, but suggest that for very young stars, the microturbulence parameter is over-estimated when Fe lines are employed. This affects the derived chemical composition and causes the metal content of very young clusters to be under-estimated.Conclusions: Our clusters display a metallicity [Fe/H] between +0.04 +/- 0.01 and +0.12 +/- 0.02; they are not more metal poor than the Sun. Although based on a relatively small sample size, our explorative study suggests that we may not need to call for ad hoc explanations to reconcile the chemical composition of young open clusters with Galactic chemical evolution models.
  •  
4.
  • Casali, G., et al. (author)
  • The Gaia-ESO survey : the non-universality of the age-chemical-clocks-metallicity relations in the Galactic disc
  • 2020
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 639
  • Journal article (peer-reviewed)abstract
    • Context. In the era of large spectroscopic surveys, massive databases of high-quality spectra coupled with the products of the Gaia satellite provide tools to outline a new picture of our Galaxy. In this framework, an important piece of information is provided by our ability to infer stellar ages, and consequently to sketch a Galactic timeline.Aims. We aim to provide empirical relations between stellar ages and abundance ratios for a sample of stars with very similar stellar parameters to those of the Sun, namely the so-called solar-like stars. We investigate the dependence on metallicity, and we apply our relations to independent samples, that is, the Gaia-ESO samples of open clusters and of field stars.Methods. We analyse high-resolution and high-signal-to-noise-ratio HARPS spectra of a sample of solar-like stars to obtain precise determinations of their atmospheric parameters and abundances for 25 elements and/or ions belonging to the main nucleosynthesis channels through differential spectral analysis, and of their ages through isochrone fitting.Results. We investigate the relations between stellar ages and several abundance ratios. For the abundance ratios with a steeper dependence on age, we perform multivariate linear regressions, in which we include the dependence on metallicity, [Fe/H]. We apply our best relations to a sample of open clusters located from the inner to the outer regions of the Galactic disc. Using our relations, we are able to recover the literature ages only for clusters located at R-GC > 7 kpc. The values that we obtain for the ages of the inner-disc clusters are much greater than the literature ones. In these clusters, the content of neutron capture elements, such as Y and Zr, is indeed lower than expected from chemical evolution models, and consequently their [Y/Mg] and [Y/Al] are lower than in clusters of the same age located in the solar neighbourhood. With our chemical evolution model and a set of empirical yields, we suggest that a strong dependence on the star formation history and metallicity-dependent stellar yields of s-process elements can substantially modify the slope of the [s/alpha]-[Fe/H]-age relation in different regions of the Galaxy.Conclusions. Our results point towards a non-universal relation [s/alpha]-[Fe/H]-age, indicating the existence of relations with different slopes and intercepts at different Galactocentric distances or for different star formation histories. Therefore, relations between ages and abundance ratios obtained from samples of stars located in a limited region of the Galaxy cannot be translated into general relations valid for the whole disc. A better understanding of the s-process at high metallicity is necessary to fully understand the origin of these variations.
  •  
5.
  • Spina, L., et al. (author)
  • The GALAH survey : tracing the Galactic disc with open clusters
  • 2021
  • In: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 503:3, s. 3279-3296
  • Journal article (peer-reviewed)abstract
    • Open clusters are unique tracers of the history of our own Galaxy's disc. According to our membership analysis based on Gala astrometry, out of the 226 potential clusters falling in the footprint of the GALactic Archaeology with HERMES (GALAH) survey or the Apache Point Observatory Galactic Evolution Experiment (APOGEE) survey, we find that 205 have secure members that were observed by at least one of the surveys. Furthermore, members of 134 clusters have high-quality spectroscopic data that we use to determine their chemical composition. We leverage this information to study the chemical distribution throughout the Galactic disc of 21 elements, from C to Eu. The radial metallicity gradient obtained from our analysis is -0.076 +/- 0.009 dex kpc(-1), which is in agreement with previous works based on smaller samples. Furthermore, the gradient in the (Fe/Hi-guiding radius (r(guid)) plane is -0.073 +/- 0.008 dex kpc(-1). We show consistently that open clusters trace the distribution of chemical elements throughout the Galactic disc differently than field stars. In particular, at the given radius, open clusters show an age-metallicity relation that has less scatter than field stars. As such scatter is often interpreted as an effect of radial migration, we suggest that these differences are due to the physical selection effect imposed by our Galaxy: clusters that would have migrated significantly also had higher chances to get destroyed. Finally, our results reveal trends in the [X/Fe]-r(guid)-age space, which are important to understand production rates of different elements as a function of space and time.
  •  
6.
  • Magrini, L., et al. (author)
  • Gaia -ESO survey : Lithium abundances in open cluster Red Clump stars
  • 2021
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 655
  • Journal article (peer-reviewed)abstract
    • Context. It has recently been suggested that all giant stars with masses below 2 M? suffer an episode of surface lithium enrichment between the tip of the red giant branch (RGB) and the red clump (RC). Aims. We test if the above result can be confirmed in a sample of RC and RGB stars that are members of open clusters. Methods. We discuss Li abundances in six open clusters with ages between 1.5 and 4.9 Gyr (turn-off masses between 1.1 and 1.7 M? ). We compare these observations with the predictions of different models that include rotation-induced mixing, thermohaline instability, mixing induced by the first He flash, and energy losses by neutrino magnetic moment. Results. In six clusters, we find close to 35% of RC stars have Li abundances that are similar or higher than those of upper RGB stars. This can be a sign of fresh Li production. Because of the extra-mixing episode connected to the luminosity bump, the expectation has been for RC stars to have systematically lower surface Li abundances. However, we cannot confirm that this possible Li production is ubiquitous. For about 65% of RC giants, we can only determine upper limits in abundances that could be hiding very low Li content. Conclusions. Our results indicate the possibility that Li is being produced in the RC, at levels that would not typically permit the classification of these the stars as Li rich. The determination of their carbon isotopic ratio would help to confirm that the RC giants have suffered extra mixing followed by subsequent Li enrichment. The Li abundances of the RC stars can be qualitatively explained by the models including an additional mixing episode close to the He flash.
  •  
7.
  • Martell, J., et al. (author)
  • Combined Neutron and X-Ray Tomography-A Versatile and Non-Destructive Tool in Planetary Geosciences
  • 2024
  • In: Journal of Geophysical Research - Planets. - : American Geophysical Union (AGU). - 2169-9097 .- 2169-9100. ; 129:2
  • Research review (peer-reviewed)abstract
    • With several upcoming sample return missions, such as the Mars Sample Return Campaign, non-destructive methods will be key to maximizing their scientific output. In this study, we demonstrate that the combination of neutron and X-ray tomography provides an important tool for the characterization of such valuable samples. These methods allow quantitative analyses of internal sample features and also provide a guide for further destructive analyses with little to no sample treatment, which maintains sample integrity, including minimizing the risk of potential contamination. Here, we present and review the results from four case studies of terrestrial impactites and meteorites along with their analytical setup. Using combined X-ray and neutron tomography, a Ni-Fe silicide spherule, that is, projectile material, was located within a Libyan Desert Glass sample and the distribution of hydrous phases was pinpointed in selected impactite samples from the Chicxulub IODP-ICDP Expedition 364 drill core and the Luizi impact structure, as well as in the Miller Range 03346 Martian meteorite. Neutron and X-ray tomography give complementary three-dimensional information about the distribution of different phases within a geologic sample. We demonstrate that these two methods can be successfully used to locate meteoritic material (i.e., from the impacting object) and hydrous components in terrestrial impactites and meteorites. This can help shed light on aqueous processes in the Solar System as well as the impact cratering process. Non-destructive methods like these will be important for up-coming sample return missions to characterize the returned samples and guide further destructive analyses. Combined neutron and X-ray imaging was used to locate projectile material and hydrous phases in meteorites and terrestrial impactites Locating and identifying projectile material can shed light on the impact cratering process Combined neutron/X-ray tomography can serve as a fundamental method for the characterization of material from (future) sample return missions
  •  
8.
  • Tautvaišiene, G., et al. (author)
  • Gaia -ESO Survey : Detailed elemental abundances in red giants of the peculiar globular cluster NGC 1851
  • 2022
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 658
  • Journal article (peer-reviewed)abstract
    • Context. NGC 1851 is one of several globular clusters for which multiple stellar populations of the subgiant branch have been clearly identified and a difference in metallicity detected. A crucial piece of information on the formation history of this cluster can be provided by the sum of A(C+N+O) abundances. However, these values have lacked a general consensus thus far. The separation of the subgiant branch can be based on age and/or A(C+N+O) abundance differences. Aims. Our main aim was to determine carbon, nitrogen, and oxygen abundances for evolved giants in the globular cluster NGC 1851 in order to check whether or not the double populations of stars are coeval. Methods. High-resolution spectra, observed with the FLAMES-UVES spectrograph on the ESO VLT telescope, were analysed using a differential model atmosphere method. Abundances of carbon were derived using spectral synthesis of the C2 band heads at 5135 and 5635.5 Å. The wavelength interval 6470-6490 Å, with CN features, was analysed to determine nitrogen abundances. Oxygen abundances were determined from the [O I] line at 6300 Å. Abundances of other chemical elements were determined from equivalent widths or spectral syntheses of unblended spectral lines. Results. We provide abundances of up to 29 chemical elements for a sample of 45 giants in NGC 1851. The investigated stars can be separated into two populations with a difference of 0.07 dex in the mean metallicity, 0.3 dex in the mean C/N, and 0.35 dex in the mean s-process dominated element-to-iron abundance ratios [s/Fe]. No significant difference was determined in the mean values of A(C+N+O) as well as in abundance to iron ratios of carbon, α- and iron-peak-elements, and of europium. Conclusions. As the averaged A(C+N+O) values between the two populations do not differ, additional evidence is given that NGC 1851 is composed of two clusters, the metal-rich cluster being by about 0.6 Gyr older than the metal-poor one. A global overview of NGC 1851 properties and the detailed abundances of chemical elements favour its formation in a dwarf spheroidal galaxy that was accreted by the Milky Way.
  •  
9.
  • Amarsi, Anish, et al. (author)
  • The GALAH Survey : non-LTE departure coefficients for large spectroscopic surveys
  • 2020
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 642
  • Journal article (peer-reviewed)abstract
    • Massive sets of stellar spectroscopic observations are rapidly becoming available and these can be used to determine the chemical composition and evolution of the Galaxy with unprecedented precision. One of the major challenges in this endeavour involves constructing realistic models of stellar spectra with which to reliably determine stellar abundances. At present, large stellar surveys commonly use simplified models that assume that the stellar atmospheres are approximately in local thermodynamic equilibrium (LTE). To test and ultimately relax this assumption, we have performed non-LTE calculations for 13 different elements (H, Li, C, N, O, Na, Mg, Al, Si, K, Ca, Mn, and Ba), using recent model atoms that have physically-motivated descriptions for the inelastic collisions with neutral hydrogen, across a grid of 3756 1D MARCS model atmospheres that spans 3000 <= T-eff/K <= 8000, - 0.5 <= log g/cm s(-2) <= 5.5, and - 5 <= [Fe/H] <= 1. We present the grids of departure coefficients that have been implemented into the GALAH DR3 analysis pipeline in order to complement the extant non-LTE grid for iron. We also present a detailed line-by-line re-analysis of 50 126 stars from GALAH DR3. We found that relaxing LTE can change the abundances by between - 0.7 dex and + 0.2 dex for different lines and stars. Taking departures from LTE into account can reduce the dispersion in the [A/Fe] versus [Fe/H] plane by up to 0.1 dex, and it can remove spurious differences between the dwarfs and giants by up to 0.2 dex. The resulting abundance slopes can thus be qualitatively different in non-LTE, possibly with important implications for the chemical evolution of our Galaxy. The grids of departure coefficients are publicly available and can be implemented into LTE pipelines to make the most of observational data sets from large spectroscopic surveys.
  •  
10.
  • Munari, U., et al. (author)
  • The GALAH survey and symbiotic stars - I. Discovery and follow-up of 33 candidate accreting-only systems
  • 2021
  • In: Monthly Notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 505:4, s. 6121-6154
  • Journal article (peer-reviewed)abstract
    • We have identified a first group of 33 new candidates for symbiotic stars (SySt) of the accreting-only variety among the 600 255 stars so far observed by the GALactic Archaeology with HERMES (GALAH) high-resolution spectroscopic survey of the Southern hemisphere, more than doubling the number of those previously known. GALAH aims to high latitudes and this offers the possibility to sound the Galaxy for new SySt away from the usual plane and bulge hunting regions. In this paper, we focus on SySt of the M spectral type, showing an Hα emission with a peak in excess of 0.5 above the adjacent continuum level, and not affected by coherent radial pulsations. These constraints will be relaxed in future studies. The 33 new candidate SySt were subjected to an array of follow-up confirmatory observations [X-ray/ultraviolet (UV) observations with the Swift satellite, search for optical flickering, presence of a near-UV upturn in ground-based photometric and spectroscopic data, radial velocity changes suggestive of orbital motion, and variability of the emission-line profiles]. According to Gaia Early Data Release 3 (EDR3) parallaxes, the candidate new SySt are located at the tip of the giant branch, sharing the same distribution in M(Ks) of the well-established SySt. The accretion luminosities of the candidate new SySt are in the range 1-10 L⊙, corresponding to mass accretion rates of 0.1-1 × 10-9 M⊙ yr-1 for white dwarfs of 1 M⊙. The M giant of one of them presents a large lithium overabundance.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-10 of 15

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view