SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Maughan R) srt2:(2020-2024)"

Search: WFRF:(Maughan R) > (2020-2024)

  • Result 1-9 of 9
Sort/group result
   
EnumerationReferenceCoverFind
1.
  •  
2.
  •  
3.
  •  
4.
  • Adam, R. M., et al. (author)
  • The XXL Survey: LI. Pressure profile and Y SZ -M scaling relation in three low-mass galaxy clusters at z∼1 observed with NIKA2
  • 2024
  • In: Astronomy and Astrophysics. - 0004-6361 .- 1432-0746. ; 684
  • Journal article (peer-reviewed)abstract
    • Context. The thermodynamical properties of the intracluster medium (ICM) are driven by scale-free gravitational collapse, but they also reflect the rich astrophysical processes at play in galaxy clusters. At low masses (∼1014M) and high redshift (z≳1), these properties remain poorly constrained, observationally speaking, due to the difficulty in obtaining resolved and sensitive data. Aims. We aim to investigate the inner structure of the ICM as seen through the Sunyaev-Zel’dovich (SZ) effect in this regime of mass and redshift. We focused on the thermal pressure profile and the scaling relation between SZ flux and mass, namely the YSZ-M scaling relation. Methods. The three galaxy clusters XLSSC 072 (z=1.002), XLSSC 100 (z=0.915), and XLSSC 102 (z=0.969), with M500∼2×1014M, were selected from the XXL X-ray survey and observed with the NIKA2 millimeter camera to image their SZ signal. XMM-Newton X-ray data were used as a complement to the NIKA2 data to derive masses based on the YX-M relation and the hydrostatic equilibrium. Results. The SZ images of the three clusters, along with the X-ray and optical data, indicate dynamical activity related to merging events. The pressure profile is consistent with that expected for morphologically disturbed systems, with a relatively flat core and a shallow outer slope. Despite significant disturbances in the ICM, the three high-redshift low-mass clusters follow the YSZ-M relation expected from standard evolution remarkably well. Conclusions. These results indicate that the dominant physics that drives cluster evolution is already in place by z∼1, at least for systems with masses above M500∼1014M.
  •  
5.
  • Ortiz-Fernandez, Lourdes, et al. (author)
  • Identification of susceptibility loci for Takayasu arteritis through a large multi-ancestral genome-wide association study
  • 2021
  • In: American Journal of Human Genetics. - CAMBRIDGE, MA USA : Cell Press. - 0002-9297 .- 1537-6605. ; 108:1, s. 84-99
  • Journal article (peer-reviewed)abstract
    • Takayasu arteritis is a rare inflammatory disease of large arteries. We performed a genetic study in Takayasu arteritis comprising 6,670 individuals (1,226 affected individuals) from five different populations. We discovered HLA risk factors and four non-HLA susceptibility loci in VPS8, SVEP1, CFL2, and chr13q21 and reinforced IL12B, PTK2B, and chr21q22 as robust susceptibility loci shared across ancestries. Functional analysis proposed plausible underlying disease mechanisms and pinpointed ETS2 as a potential causal gene for chr21q22 association. We also identified >60 candidate loci with suggestive association (p < 5 x 10(-s)) and devised a genetic risk score for Takayasu arteritis. Takayasu arteritis was compared to hundreds of other traits, revealing the closest genetic relatedness to inflammatory bowel disease. Epigenetic patterns within risk loci suggest roles for monocytes and B cells in Takayasu arteritis. This work enhances understanding of the genetic basis and pathophysiology of Takayasu arteritis and provides clues for potential new therapeutic targets.
  •  
6.
  • Peiffer, C., et al. (author)
  • On the equivalence of the X-ray scattering retrieval with beam tracking and analyser-based imaging using a synchrotron source
  • 2023
  • In: Journal of Physics D. - : IOP Publishing. - 0022-3727 .- 1361-6463. ; 56:45
  • Journal article (peer-reviewed)abstract
    • X-ray phase contrast imaging (XPCI) methods give access to contrast mechanisms that are based on the refractive properties of matter on top of the absorption coefficient in conventional x-ray imaging. Ultra small angle x-ray scattering (USAXS) is a phase contrast mechanism that arises due to multiple refraction events caused by physical features of a scale below the physical resolution of the used imaging system. USAXS contrast can therefore give insight into subresolution structural information, which is an ongoing research topic in the vast field of different XPCI techniques. In this study, we quantitatively compare the USAXS signal retrieved by the beam tracking XPCI technique with the gold standard of the analyzer based imaging XPCI technique using a synchrotron x-ray source. We find that, provided certain conditions are met, the two methods measure the same quantity.
  •  
7.
  •  
8.
  •  
9.
  • Ricci, M., et al. (author)
  • The XXL Survey: XLIV. Sunyaev-Zel'dovich mapping of a low-mass cluster at z ∼1: A multi-wavelength approach
  • 2020
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 642
  • Journal article (peer-reviewed)abstract
    • High-mass clusters at low redshifts have been intensively studied at various wavelengths. However, while more distant objects at lower masses constitute the bulk population of future surveys, their physical state remain poorly explored to date. In this paper, we present resolved observations of the Sunyaev-Zel'dovich (SZ) effect, obtained with the NIKA2 camera, towards the cluster of galaxies XLSSC 102, a relatively low-mass system (M500 ∼ 2 × 1014 M·) at z = 0.97 detected from the XXL survey. We combine NIKA2 SZ data, XMM-Newton X-ray data, and Megacam optical data to explore, respectively, the spatial distribution of the gas electron pressure, the gas density, and the galaxies themselves. We find significant offsets between the X-ray peak, the SZ peak, the brightest cluster galaxy, and the peak of galaxy density. Additionally, the galaxy distribution and the gas present elongated morphologies. This is interpreted as the sign of a recent major merging event, which induced a local boost of the gas pressure towards the north of XLSSC 102 and stripped the gas out of the galaxy group. The NIKA2 data are also combined with XXL data to construct the thermodynamic profiles of XLSSC 102, obtaining relatively tight constraints up to about ∼r500, and revealing properties that are typical of disturbed systems. We also explore the impact of the cluster centre definition and the implication of local pressure substructure on the recovered profiles. Finally, we derive the global properties of XLSSC 102 and compare them to those of high-mass-and-low-redshift systems, finding no strong evidence for non-standard evolution. We also use scaling relations to obtain alternative mass estimates from our profiles. The variation between these different mass estimates reflects the difficulty to accurately measure the mass of low-mass clusters at z ∼ 1, especially with low signal-to-noise ratio data and for a disturbed system. However, it also highlights the strength of resolved SZ observations alone and in combination with survey-like X-ray data. This is promising for the study of high redshift clusters from the combination of eROSITA and high resolution SZ instruments and will complement the new generation of optical surveys from facilities such as LSST and Euclid.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-9 of 9

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view