SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Meléndez Jorge) srt2:(2010-2014)"

Search: WFRF:(Meléndez Jorge) > (2010-2014)

  • Result 1-3 of 3
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Gustafsson, Bengt, et al. (author)
  • The chemical composition of solar-type stars in comparison with that of the Sun
  • 2010
  • In: Astrophysics and Space Science. - : Springer Science and Business Media LLC. - 0004-640X .- 1572-946X. ; 328:1-2, s. 185-191
  • Journal article (peer-reviewed)abstract
    • The question whether the solar chemical composition is typical for solar-type stars is analysed by comparing the Sun with different stellar samples, including a sample of stars with very similar parameters, solar twins. Although typical in terms of overall metallicity for stars of solar age and galactic orbit, the solar atmosphere is found to have abundances, as compared with solar twins, that indicate that its gas has once been affected by dust formation and dust separation. It is concluded that this may be related to the formation of the solar planetary system and its special properties.
  •  
2.
  • Kiselman, Dan, 1963-, et al. (author)
  • Is the solar spectrum latitude-dependent? An investigation with SST/TRIPPEL
  • 2011
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 535, s. A14-
  • Journal article (peer-reviewed)abstract
    • Context. In studies of the solar spectrum compared to spectra of solar twin stars, it has been found that the chemical composition of the Sun seems to depart systematically from those of the twins. One possible explanation could be that the effect is caused by the special aspect angle of the Sun when observed from Earth compared with the aspect angles of the twins. This means that a latitude dependence of the solar spectrum, even with the heliocentric angle constant, could lead to the observed effects. Aims. We explore a possible variation in the strength of certain spectral lines that are used in the comparisons between the composition of the Sun and the twins at loci on the solar disk with different latitudes but at constant heliocentric angle. Methods. We use the TRIPPEL spectrograph at the Swedish 1-m Solar Telescope on La Palma to record spectra in five spectral regions to compare different locations on the solar disk at a heliocentric angle of 45◦ . Equivalent widths and other parameters are measured for fifteen different lines representing nine atomic species. Spectra acquired at different times are used in averaging the line parameters for each line and observing position. Results. The relative variations in equivalent widths at the equator and at solar latitude ∼45◦ are found to be less than 1.5% for all spectral lines studied. Translated into elemental abundances as they would be measured from a terrestrial and a hypothetical pole-on observer, the difference is estimated to be within 0.005 dex in all cases. Conclusions. It is very unlikely that latitude effects could cause the reported abundance difference between the Sun and the solar twins. The accuracy obtainable in measurements of small differences in spectral line strengths between different solar disk positions is very high, and can be exploited in studies of, e.g. weak magnetic fields or effects of solar activity on atmospheric structure.
  •  
3.
  • Klionsky, Daniel J., et al. (author)
  • Guidelines for the use and interpretation of assays for monitoring autophagy
  • 2012
  • In: Autophagy. - : Informa UK Limited. - 1554-8635 .- 1554-8627. ; 8:4, s. 445-544
  • Research review (peer-reviewed)abstract
    • In 2008 we published the first set of guidelines for standardizing research in autophagy. Since then, research on this topic has continued to accelerate, and many new scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Accordingly, it is important to update these guidelines for monitoring autophagy in different organisms. Various reviews have described the range of assays that have been used for this purpose. Nevertheless, there continues to be confusion regarding acceptable methods to measure autophagy, especially in multicellular eukaryotes. A key point that needs to be emphasized is that there is a difference between measurements that monitor the numbers or volume of autophagic elements (e.g., autophagosomes or autolysosomes) at any stage of the autophagic process vs. those that measure flux through the autophagy pathway (i.e., the complete process); thus, a block in macroautophagy that results in autophagosome accumulation needs to be differentiated from stimuli that result in increased autophagic activity, defined as increased autophagy induction coupled with increased delivery to, and degradation within, lysosomes (in most higher eukaryotes and some protists such as Dictyostelium) or the vacuole (in plants and fungi). In other words, it is especially important that investigators new to the field understand that the appearance of more autophagosomes does not necessarily equate with more autophagy. In fact, in many cases, autophagosomes accumulate because of a block in trafficking to lysosomes without a concomitant change in autophagosome biogenesis, whereas an increase in autolysosomes may reflect a reduction in degradative activity. Here, we present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macroautophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes. These guidelines are not meant to be a formulaic set of rules, because the appropriate assays depend in part on the question being asked and the system being used. In addition, we emphasize that no individual assay is guaranteed to be the most appropriate one in every situation, and we strongly recommend the use of multiple assays to monitor autophagy. In these guidelines, we consider these various methods of assessing autophagy and what information can, or cannot, be obtained from them. Finally, by discussing the merits and limits of particular autophagy assays, we hope to encourage technical innovation in the field.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-3 of 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view