SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Meyerov I.) srt2:(2018)"

Search: WFRF:(Meyerov I.) > (2018)

  • Result 1-2 of 2
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Larin, Anton, et al. (author)
  • Load balancing for particle-in-cell plasma simulation on multicore systems
  • 2018
  • In: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). - Cham : Springer International Publishing. - 1611-3349 .- 0302-9743. ; 10777 LNCS, s. 145-155
  • Conference paper (peer-reviewed)abstract
    • Particle-in-cell plasma simulation is an important area of computational physics. The particle-in-cell method naturally allows parallel processing on distributed and shared memory. In this paper we address the problem of load balancing on multicore systems. While being well-studied for many traditional applications of the method, it is a relevant problem for the emerging area of particle-in-cell simulations with account for effects of quantum electrodynamics. Such simulations typically produce highly non-uniform, and sometimes volatile, particle distributions, which could require custom load balancing schemes. In this paper we present a computational evaluation of several standard and custom load balancing schemes for the particle-in-cell method on a high-end system with 96 cores on shared memory. We use a test problem with static non-uniform particle distribution and a real problem with account for quantum electrodynamics effects, which produce dynamically changing highly non-uniform distributions of particles and workload. For these problems the custom schemes result in increase of scaling efficiency by up to 20% compared to the standard OpenMP schemes.
  •  
2.
  • Efimenko, E., et al. (author)
  • Extreme plasma states in laser-governed vacuum breakdown
  • 2018
  • In: Scientific Reports. - : Springer Science and Business Media LLC. - 2045-2322 .- 2045-2322. ; 8:1
  • Journal article (peer-reviewed)abstract
    • Triggering vacuum breakdown at laser facility is expected to provide rapid electron-positron p air production for studies in laboratory astrophysics and fundamental physics. However, the density of the produced plasma may cease to increase at a relativistic critical density, when the plasma becomes opaque. Here, we identify the opportunity of breaking this limit using optimal beam configuration of petawatt-class lasers. Tightly focused laser fields allow generating plasma in a small focal volume much less than λ 3 and creating extreme plasma states in terms of density and produced currents. These states can be regarded to be a new object of nonlinear plasma physics. Using 3D QED-PIC simulations we demonstrate a possibility of reaching densities over 10 25 cm -3, which is an order of magnitude higher than expected earlier. Controlling the process via initial target parameters provides an opportunity to reach the discovered plasma states at the upcoming laser facilities.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-2 of 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view