SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Minhas P) srt2:(2020-2024)"

Search: WFRF:(Minhas P) > (2020-2024)

  • Result 1-9 of 9
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • 2021
  • swepub:Mat__t
  •  
2.
  •  
3.
  •  
4.
  •  
5.
  •  
6.
  • Ercan, Ayse Bahar, et al. (author)
  • Clinical and biological landscape of constitutional mismatch-repair deficiency syndrome: an International Replication Repair Deficiency Consortium cohort study.
  • 2024
  • In: The Lancet Oncology. - 1470-2045. ; 25:5, s. 668-682
  • Journal article (peer-reviewed)abstract
    • Constitutional mismatch repair deficiency (CMMRD) syndrome is a rare and aggressive cancer predisposition syndrome. Because a scarcity of data on this condition contributes to management challenges and poor outcomes, we aimed to describe the clinical spectrum, cancer biology, and impact of genetics on patient survival in CMMRD.In this cohort study, we collected cross-sectional and longitudinal data on all patients with CMMRD, with no age limits, registered with the International Replication Repair Deficiency Consortium (IRRDC) across more than 50 countries. Clinical data were extracted from the IRRDC database, medical records, and physician-completed case record forms. The primary objective was to describe the clinical features, cancer spectrum, and biology of the condition. Secondary objectives included estimations of cancer incidence and of the impact of the specific mismatch-repair gene and genotype on cancer onset and survival, including after cancer surveillance and immunotherapy interventions.We analysed data from 201 patients (103 males, 98 females) enrolled between June 5, 2007 and Sept 9, 2022. Median age at diagnosis of CMMRD or a related cancer was 8·9 years (IQR 5·9-12·6), and median follow-up from diagnosis was 7·2 years (3·6-14·8). Endogamy among minorities and closed communities contributed to high homozygosity within countries with low consanguinity. Frequent dermatological manifestations (117 [93%] of 126 patients with complete data) led to a clinical overlap with neurofibromatosis type 1 (35 [28%] of 126). 339 cancers were reported in 194 (97%) of 201 patients. The cumulative cancer incidence by age 18 years was 90% (95% CI 80-99). Median time between cancer diagnoses for patients with more than one cancer was 1·9 years (IQR 0·8-3·9). Neoplasms developed in 15 organs and included early-onset adult cancers. CNS tumours were the most frequent (173 [51%] cancers), followed by gastrointestinal (75 [22%]), haematological (61 [18%]), and other cancer types (30 [9%]). Patients with CNS tumours had the poorest overall survival rates (39% [95% CI 30-52] at 10 years from diagnosis; log-rank p<0·0001 across four cancer types), followed by those with haematological cancers (67% [55-82]), gastrointestinal cancers (89% [81-97]), and other solid tumours (96% [88-100]). All cancers showed high mutation and microsatellite indel burdens, and pathognomonic mutational signatures. MLH1 or MSH2 variants caused earlier cancer onset than PMS2 or MSH6 variants, and inferior survival (overall survival at age 15 years 63% [95% CI 55-73] for PMS2, 49% [35-68] for MSH6, 19% [6-66] for MLH1, and 0% for MSH2; p<0·0001). Frameshift or truncating variants within the same gene caused earlier cancers and inferior outcomes compared with missense variants (p<0·0001). The greater deleterious effects of MLH1 and MSH2 variants as compared with PMS2 and MSH6 variants persisted despite overall improvements in survival after surveillance or immune checkpoint inhibitor interventions.The very high cancer burden and unique genomic landscape of CMMRD highlight the benefit of comprehensive assays in timely diagnosis and precision approaches toward surveillance and immunotherapy. These data will guide the clinical management of children and patients who survive into adulthood with CMMRD.The Canadian Institutes for Health Research, Stand Up to Cancer, Children's Oncology Group National Cancer Institute Community Oncology Research Program, Canadian Cancer Society, Brain Canada, The V Foundation for Cancer Research, BioCanRx, Harry and Agnieszka Hall, Meagan's Walk, BRAINchild Canada, The LivWise Foundation, St Baldrick Foundation, Hold'em for Life, and Garron Family Cancer Center.
  •  
7.
  • Minhas, Vishal, et al. (author)
  • Modeling DNA Flexibility : Comparison of Force Fields from Atomistic to Multiscale Levels
  • 2020
  • In: Journal of Physical Chemistry B. - : American Chemical Society (ACS). - 1520-6106 .- 1520-5207. ; 124:1, s. 38-49
  • Journal article (peer-reviewed)abstract
    • Accurate parametrization of force fields (FFs) is of ultimate importance for computer simulations to be reliable and to possess a predictive power. In this work, we analyzed, in multi-microsecond simulations of a 40-base-pair DNA fragment, the performance of four force fields, namely, the two recent major updates of CHARMM and two from the AMBER family. We focused on a description of double-helix DNA flexibility and dynamics both at atomistic and at mesoscale level in coarse-grained (CG) simulations. In addition to the traditional analysis of different base-pair and base-step parameters, we extended our analysis to investigate the ability of the force field to parametrize a CG DNA model by structure-based bottom-up coarse-graining, computing DNA persistence length as a function of ionic strength. Our simulations unambiguously showed that the CHARMM36 force field is unable to preserve DNA's structural stability at over-microsecond time scale. Both versions of the AMBER FF, parmbsc0 and parmbsc1, showed good agreement with experiment, with some bias of parmbsc0 parameters for intermediate A/B form DNA structures. The CHARMM27 force field provides stable atomistic trajectories and overall (among the considered force fields) the best fit to experimentally determined DNA flexibility parameters both at atomistic and at mesoscale level.
  •  
8.
  • Sun, Tiedong, et al. (author)
  • A Bottom-Up Coarse-Grained Model for Nucleosome-Nucleosome Interactions with Explicit Ions
  • 2022
  • In: Journal of Chemical Theory and Computation. - : American Chemical Society (ACS). - 1549-9618 .- 1549-9626. ; 18:6, s. 3948-3960
  • Journal article (peer-reviewed)abstract
    • The nucleosome core particle (NCP) is a large complex of 145–147 base pairs of DNA and eight histone proteins and is the basic building block of chromatin that forms the chromosomes. Here, we develop a coarse-grained (CG) model of the NCP derived through a systematic bottom-up approach based on underlying all-atom MD simulations to compute the necessary CG interactions. The model produces excellent agreement with known structural features of the NCP and gives a realistic description of the nucleosome–nucleosome attraction in the presence of multivalent cations (Mg(H2O)62+ or Co(NH3)63+) for systems comprising 20 NCPs. The results of the simulations reveal structural details of the NCP–NCP interactions unavailable from experimental approaches, and this model opens the prospect for the rigorous modeling of chromatin fibers. 
  •  
9.
  • Sun, Tiedong, et al. (author)
  • Bottom-Up Coarse-Grained Modeling of DNA
  • 2021
  • In: Frontiers in Molecular Biosciences. - : Frontiers Media SA. - 2296-889X. ; 8
  • Research review (peer-reviewed)abstract
    • Recent advances in methodology enable effective coarse-grained modeling of deoxyribonucleic acid (DNA) based on underlying atomistic force field simulations. The so-called bottom-up coarse-graining practice separates fast and slow dynamic processes in molecular systems by averaging out fast degrees of freedom represented by the underlying fine-grained model. The resulting effective potential of interaction includes the contribution from fast degrees of freedom effectively in the form of potential of mean force. The pair-wise additive potential is usually adopted to construct the coarse-grained Hamiltonian for its efficiency in a computer simulation. In this review, we present a few well-developed bottom-up coarse-graining methods, discussing their application in modeling DNA properties such as DNA flexibility (persistence length), conformation, melting, and DNA condensation.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-9 of 9

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view