SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Nielsen Ole Raaschou) srt2:(2015-2019)"

Search: WFRF:(Nielsen Ole Raaschou) > (2015-2019)

  • Result 1-10 of 10
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Andersen, Zorana J., et al. (author)
  • Long-term Exposure to Ambient Air Pollution and Incidence of Brain Tumor : the European Study of Cohorts for Air Pollution Effects (ESCAPE)
  • 2018
  • In: Neuro-Oncology. - : Oxford University Press. - 1522-8517 .- 1523-5866. ; 20:3, s. 420-432
  • Journal article (peer-reviewed)abstract
    • Background: Epidemiological evidence on the association between ambient air pollution and brain tumor risk is sparse and inconsistent.Methods: In 12 cohorts from 6 European countries, individual estimates of annual mean air pollution levels at the baseline residence were estimated by standardized land-use regression models developed within the ESCAPE and TRANSPHORM projects: particulate matter (PM) ≤2.5, ≤10, and 2.5–10 μm in diameter (PM2.5, PM10, and PMcoarse), PM2.5 absorbance, nitrogen oxides (NO2 and NOx) and elemental composition of PM. We estimated cohort-specific associations of air pollutant concentrations and traffic intensity with total, malignant, and nonmalignant brain tumor, in separate Cox regression models, adjusting for risk factors, and pooled cohort-specific estimates using random-effects meta-analyses.Results: Of 282194 subjects from 12 cohorts, 466 developed malignant brain tumors during 12 years of follow-up. Six of the cohorts also had data on nonmalignant brain tumor, where among 106786 subjects, 366 developed brain tumor: 176 nonmalignant and 190 malignant. We found a positive, statistically nonsignificant association between malignant brain tumor and PM2.5 absorbance (hazard ratio and 95% CI: 1.67; 0.89–3.14 per 10–5/m3), and weak positive or null associations with the other pollutants. Hazard ratio for PM2.5 absorbance (1.01; 0.38–2.71 per 10–5/m3) and all other pollutants were lower for nonmalignant than for malignant brain tumors.Conclusion: We found suggestive evidence of an association between long-term exposure to PM2.5 absorbance indicating traffic-related air pollution and malignant brain tumors, and no association with overall or nonmalignant brain tumors.
  •  
2.
  • Andersen, Zorana J., et al. (author)
  • Long-term exposure to ambient air pollution and incidence of postmenopausal breast cancer in 15 European cohorts within the ESCAPE project
  • 2017
  • In: Journal of Environmental Health Perspectives. - Research triangle park : US department of health. - 0091-6765 .- 1552-9924. ; 125:10
  • Journal article (peer-reviewed)abstract
    • BACKGROUND: Epidemiological evidence on the association between ambient air pollution and breast cancer risk is inconsistent.OBJECTIVE: We examined the association between long-term exposure to ambient air pollution and incidence of postmenopausal breast cancer in European women.METHODS: In 15 cohorts from nine European countries, individual estimates of air pollution levels at the residence were estimated by standardized land-use regression models developed within the European Study of Cohorts for Air Pollution Effects (ESCAPE) and Transport related Air Pollution and Health impacts – Integrated Methodologies for Assessing Particulate Matter (TRANSPHORM) projects: particulate matter (PM) ≤2.5μm, ≤10μm, and 2.5–10μm in diameter (PM2.5, PM10, and PMcoarse, respectively); PM2.5 absorbance; nitrogen oxides (NO2 and NOx); traffic intensity; and elemental composition of PM. We estimated cohort-specific associations between breast cancer and air pollutants using Cox regression models, adjusting for major lifestyle risk factors, and pooled cohort-specific estimates using random-effects meta-analyses.RESULTS: Of 74,750 postmenopausal women included in the study, 3,612 developed breast cancer during 991,353 person-years of follow-up. We found positive and statistically insignificant associations between breast cancer and PM2.5 {hazard ratio (HR)=1.08 [95% confidence interval (CI): 0.77, 1.51] per 5 μg/m(3)}, PM10 [1.07 (95% CI: 0.89, 1.30) per 10 μg/m(3)], PMcoarse[1.20 (95% CI: 0.96, 1.49 per 5 μg/m(3)], and NO(2) [1.02 (95% CI: 0.98, 1.07 per 10 μg/m(3)], and a statistically significant association with NOx [1.04 (95% CI: 1.00, 1.08) per 20 μg/m(3), p=0.04].CONCLUSIONS: We found suggestive evidence of an association between ambient air pollution and incidence of postmenopausal breast cancer in European women.
  •  
3.
  • Beelen, Rob, et al. (author)
  • Natural-Cause Mortality and Long-Term Exposure to Particle Components : An Analysis of 19 European Cohorts within the Multi-Center ESCAPE Project
  • 2015
  • In: Journal of Environmental Health Perspectives. - : Environmental Health Perspectives. - 0091-6765 .- 1552-9924. ; 123:6, s. 525-533
  • Research review (peer-reviewed)abstract
    • Background: Studies have shown associations between mortality and long-term exposure to particulate matter air pollution. Few cohort studies have estimated the effects of the elemental composition of particulate matter on mortality. Objectives: Our aim was to study the association between natural-cause mortality and long-term exposure to elemental components of particulate matter. Methods: Mortality and confounder data from 19 European cohort studies were used. Residential exposure to eight a priori-selected components of particulate matter ( PM) was characterized following a strictly standardized protocol. Annual average concentrations of copper, iron, potassium, nickel, sulfur, silicon, vanadium, and zinc within PM size fractions <= 2.5 mu m (PM2.5) and <= 10 mu m (PM10) were estimated using land-use regression models. Cohort-specific statistical analyses of the associations between mortality and air pollution were conducted using Cox proportional hazards models using a common protocol followed by meta-analysis. Results: The total study population consisted of 291,816 participants, of whom 25,466 died from a natural cause during follow-up (average time of follow-up, 14.3 years). Hazard ratios were positive for almost all elements and statistically significant for PM2.5 sulfur (1.14; 95% CI: 1.06, 1.23 per 200ng/m(3)). In a two-pollutant model, the association with PM2.5 sulfur was robust to adjustment for PM2.5 mass, whereas the association with PM2.5 mass was reduced. Conclusions: Long-term exposure to PM2.5 sulfur was associated with natural-cause mortality. This association was robust to adjustment for other pollutants and PM2.5.
  •  
4.
  • de Hoogh, Kees, et al. (author)
  • Development of West-European PM2.5 and NO2 land use regression models incorporating satellite-derived and chemical transport modelling data
  • 2016
  • In: Environmental Research. - : Elsevier BV. - 0013-9351 .- 1096-0953. ; 151, s. 1-10
  • Journal article (peer-reviewed)abstract
    • Satellite-derived (SAT) and chemical transport model (CTM) estimates of PM2.5 and NO2 are increasingly used in combination with Land Use Regression (LUR) models. We aimed to compare the contribution of SAT and CTM data to the performance of LUR PM2.5 and NO2 models for Europe. Four sets of models, all including local traffic and land use variables, were compared (LUR without SAT or CTM, with SAT only, with CTM only, and with both SAT and CTM). LUR models were developed using two monitoring data sets: PM2.5 and NO2 ground level measurements from the European Study of Cohorts for Air Pollution Effects (ESCAPE) and from the European AIRBASE network. LUR PM2.5 models including SAT and SAT+CTM explained ~60% of spatial variation in measured PM2.5 concentrations, substantially more than the LUR model without SAT and CTM (adjR(2): 0.33-0.38). For NO2 CTM improved prediction modestly (adjR(2): 0.58) compared to models without SAT and CTM (adjR(2): 0.47-0.51). Both monitoring networks are capable of producing models explaining the spatial variance over a large study area. SAT and CTM estimates of PM2.5 and NO2 significantly improved the performance of high spatial resolution LUR models at the European scale for use in large epidemiological studies.
  •  
5.
  • Fuks, Kateryna B., et al. (author)
  • Long-term exposure to ambient air pollution and traffic noise and incident hypertension in seven cohorts of the European study of cohorts for air pollution effects (ESCAPE)
  • 2017
  • In: European Heart Journal. - : Oxford University Press (OUP). - 0195-668X .- 1522-9645. ; 38:13, s. 983-990
  • Journal article (peer-reviewed)abstract
    • Aims We investigated whether traffic-related air pollution and noise are associated with incident hypertension in European cohorts. Methods and results We included seven cohorts of the European study of cohorts for air pollution effects (ESCAPE). We modelled concentrations of particulate matter with aerodynamic diameter <= 2.5 mu m (PM2.5), <= 10 mu m (PM10), >2.5, and <= 10 mu m (PMcoarse), soot (PM2.5 absorbance), and nitrogen oxides at the addresses of participants with land use regression. Residential exposure to traffic noise was modelled at the facade according to the EU Directive 2002/49/EC. We assessed hypertension as (i) self-reported and (ii) measured (systolic BP >= 140mmHg or diastolic BP >= 90mmHg or intake of BP lowering medication (BPLM). We used Poisson regression with robust variance estimation to analyse associations of traffic-related exposures with incidence of hypertension, controlling for relevant confounders, and combined the results from individual studies with random-effects meta-analysis. Among 41 072 participants free of self-reported hypertension at baseline, 6207 (15.1%) incident cases occurred within 5-9 years of follow-up. Incidence of self-reported hypertension was positively associated with PM2.5 (relative risk (RR) 1.22 [95%-confidence interval (CI): 1.08; 1.37] per 5 mu g/m(3)) and PM2.5 absorbance (RR 1.13 [95% CI: 1.02; 1.24] per 10(-5) m(-1)). These estimates decreased slightly upon adjustment for road traffic noise. Road traffic noise was weakly positively associated with the incidence of self-reported hypertension. Among 10 896 participants at risk, 3549 new cases of measured hypertension occurred. We found no clear associations with measured hypertension. Conclusion Long-term residential exposures to air pollution and noise are associated with increased incidence of self-reported hypertension.
  •  
6.
  • Gasull, Magda, et al. (author)
  • Methodological issues in a prospective study on plasma concentrations of persistent organic pollutants and pancreatic cancer risk within the EPIC cohort
  • 2019
  • In: Environmental Research. - : Elsevier. - 0013-9351 .- 1096-0953. ; 169, s. 417-433
  • Journal article (peer-reviewed)abstract
    • BACKGROUND: The use of biomarkers of environmental exposure to explore new risk factors for pancreatic cancer presents clinical, logistic, and methodological challenges that are also relevant in research on other complex diseases.OBJECTIVES: First, to summarize the main design features of a prospective case-control study -nested within the European Prospective Investigation into Cancer and Nutrition (EPIC) cohort- on plasma concentrations of persistent organic pollutants (POPs) and pancreatic cancer risk. And second, to assess the main methodological challenges posed by associations among characteristics and habits of study participants, fasting status, time from blood draw to cancer diagnosis, disease progression bias, basis of cancer diagnosis, and plasma concentrations of lipids and POPs. Results from etiologic analyses on POPs and pancreatic cancer risk, and other analyses, will be reported in future articles.METHODS: Study subjects were 1533 participants (513 cases and 1020 controls matched by study centre, sex, age at blood collection, date and time of blood collection, and fasting status) enrolled between 1992 and 2000. Plasma concentrations of 22 POPs were measured by gas chromatography - triple quadrupole mass spectrometry (GC-MS/MS). To estimate the magnitude of the associations we calculated multivariate-adjusted odds ratios by unconditional logistic regression, and adjusted geometric means by General Linear Regression Models.RESULTS: There were differences among countries in subjects' characteristics (as age, gender, smoking, lipid and POP concentrations), and in study characteristics (as time from blood collection to index date, year of last follow-up, length of follow-up, basis of cancer diagnosis, and fasting status). Adjusting for centre and time of blood collection, no factors were significantly associated with fasting status. Plasma concentrations of lipids were related to age, body mass index, fasting, country, and smoking. We detected and quantified 16 of the 22 POPs in more than 90% of individuals. All 22 POPs were detected in some participants, and the smallest number of POPs detected in one person was 15 (median, 19) with few differences by country. The highest concentrations were found for p,p'-DDE, PCBs 153 and 180 (median concentration: 3371, 1023, and 810 pg/mL, respectively). We assessed the possible occurrence of disease progression bias (DPB) in eight situations defined by lipid and POP measurements, on one hand, and by four factors: interval from blood draw to index date, tumour subsite, tumour stage, and grade of differentiation, on the other. In seven of the eight situations results supported the absence of DPB.CONCLUSIONS: The coexistence of differences across study centres in some design features and participant characteristics is of relevance to other multicentre studies. Relationships among subjects' characteristics and among such characteristics and design features may play important roles in the forthcoming analyses on the association between plasma concentrations of POPs and pancreatic cancer risk.
  •  
7.
  • Nagel, Gabriele, et al. (author)
  • Air pollution and incidence of cancers of the stomach and the upper aerodigestive tract in the European Study of Cohorts for Air Pollution Effects (ESCAPE)
  • 2018
  • In: International Journal of Cancer. - : John Wiley & Sons. - 0020-7136 .- 1097-0215. ; 143:7, s. 1632-1643
  • Journal article (peer-reviewed)abstract
    • Air pollution has been classified as carcinogenic to humans. However, to date little is known about the relevance for cancersof the stomach and upper aerodigestive tract (UADT). We investigated the association of long-term exposure to ambient airpollution with incidence of gastric and UADT cancer in 11 European cohorts. Air pollution exposure was assigned by land-useregression models for particulate matter (PM) below 10mm (PM10), below 2.5mm (PM2.5), between 2.5 and 10mm (PMcoarse),PM2.5absorbance and nitrogen oxides (NO2and NOX) as well as approximated by traffic indicators. Cox regression modelswith adjustment for potential confounders were used for cohort-specific analyses. Combined estimates were determined withrandom effects meta-analyses. During average follow-up of 14.1 years of 305,551 individuals, 744 incident cases of gastriccancer and 933 of UADT cancer occurred. The hazard ratio for an increase of 5mg/m3of PM2.5was 1.38 (95% CI 0.99; 1.92)for gastric and 1.05 (95% CI 0.62; 1.77) for UADT cancers. No associations were found for any of the other exposures consid-ered. Adjustment for additional confounders and restriction to study participants with stable addresses did not influencemarkedly the effect estimate for PM2.5and gastric cancer. Higher estimated risks of gastric cancer associated with PM2.5wasfound in men (HR 1.98 [1.30; 3.01]) as compared to women (HR 0.85 [0.5; 1.45]). This large multicentre cohort study showsan association between long-term exposure to PM2.5and gastric cancer, but not UADT cancers, suggesting that air pollutionmay contribute to gastric cancer risk.
  •  
8.
  • Pedersen, Marie, et al. (author)
  • Is There an Association Between Ambient Air Pollution and Bladder Cancer Incidence? Analysis of 15 European Cohorts
  • 2018
  • In: European Urology Focus. - : Elsevier BV. - 2405-4569. ; 4:1, s. 113-120
  • Journal article (peer-reviewed)abstract
    • Background: Ambient air pollution contains low concentrations of carcinogens implicated in the etiology of urinary bladder cancer (BC). Little is known about whether exposure to air pollution influences BC in the general population. Objective: To evaluate the association between long-term exposure to ambient air pollution and BC incidence. Design, setting and participants: We obtained data from 15 population-based cohorts enrolled between 1985 and 2005 in eight European countries (N = 303 431; mean follow-up 14.1 yr). We estimated exposure to nitrogen oxides (NO2 and NOx), particulate matter (PM) with diameter <10 mu m (PM10), <2.5 mu m (PM2.5). between 2.5 and 10 mu m (PM2.5-10). PM2.5 absorbance (soot), elemental constituents of PM, organic carbon, and traffic density at baseline home addresses using standardized land-use regression models from the European Study of Cohorts for Air Pollution Effects project. Outcome measurements and statistical analysis: We used Cox proportional-hazards models with adjustment for potential confounders for cohort-specific analyses and meta-analyses to estimate summary hazard ratios (HRS) for BC incidence. Results and limitations: During follow-up, 943 incident BC cases were diagnosed. In the meta-analysis, none of the exposures were associated with BC risk. The summary HRs associated with a 10-mu g/m(3) increase in NO2 and 51-mu g/m(3) increase in PM2.5 were 0.98 (95% confidence interval [CI] 0.89-1.08) and 0.86 (95% CI 0.63-1.18), respectively. Limitations include the lack of information about lifetime exposure. Conclusions: There was no evidence of an association between exposure to outdoor air pollution levels at place of residence and risk of BC. Patient summary: We assessed the link between outdoor air pollution at place of residence and bladder cancer using the largest study population to date and extensive assessment of exposure and comprehensive data on personal risk factors such as smoking. We found no association between the levels of outdoor air pollution at place of residence and bladder cancer risk.
  •  
9.
  • Raaschou-Nielsen, Ole, et al. (author)
  • Outdoor air pollution and risk for kidney parenchyma cancer in 14 European cohorts
  • 2017
  • In: International Journal of Cancer. - : Wiley. - 0020-7136 .- 1097-0215. ; 140:7, s. 1528-1537
  • Journal article (peer-reviewed)abstract
    • Several studies have indicated weakly increased risk for kidney cancer among occupational groups exposed to gasoline vapors, engine exhaust, polycyclic aromatic hydrocarbons and other air pollutants, although not consistently. It was the aim to investigate possible associations between outdoor air pollution at the residence and the incidence of kidney parenchyma cancer in the general population. We used data from 14 European cohorts from the ESCAPE study. We geocoded and assessed air pollution concentrations at baseline addresses by land-use regression models for particulate matter (PM10 , PM2.5 , PMcoarse , PM2.5 absorbance (soot)) and nitrogen oxides (NO2 , NOx ), and collected data on traffic. We used Cox regression models with adjustment for potential confounders for cohort-specific analyses and random effects models for meta-analyses to calculate summary hazard ratios (HRs). The 289,002 cohort members contributed 4,111,908 person-years at risk. During follow-up (mean 14.2 years) 697 incident cancers of the kidney parenchyma were diagnosed. The meta-analyses showed higher HRs in association with higher PM concentration, e.g. HR=1.57 (95%CI: 0.81-3.01) per 5μg/m(3) PM2.5 and HR=1.36 (95%CI: 0.84-2.19) per 10(-5) m(-1) PM2.5 absorbance, albeit never statistically significant. The HRs in association with nitrogen oxides and traffic density on the nearest street were slightly above one. Sensitivity analyses among participants who did not change residence during follow-up showed stronger associations, but none were statistically significant. This study provides suggestive evidence that exposure to outdoor PM at the residence may be associated with higher risk for kidney parenchyma cancer; the results should be interpreted cautiously as associations may be due to chance.
  •  
10.
  • Weinmayr, Gudrun, et al. (author)
  • Particulate matter air pollution components and incidence of cancers of the stomach and the upper aerodigestive tract in the European Study of Cohorts of Air Pollution Effects (ESCAPE)
  • 2018
  • In: Environment International. - : Elsevier BV. - 0160-4120 .- 1873-6750. ; 120, s. 163-171
  • Journal article (peer-reviewed)abstract
    • Introduction: Previous analysis from the large European multicentre ESCAPE study showed an association of ambient particulate matter < 2.5 mu m (PM2.5) air pollution exposure at residence with the incidence of gastric cancer. It is unclear which components of PM are most relevant for gastric and also upper aerodigestive tract (UADT) cancer and some of them may not be strongly correlated with PM mass. We evaluated the association between long-term exposure to elemental components of PM2.5 and PM10 and gastric and UADT cancer incidence in European adults.Methods: Baseline addresses of individuals were geocoded and exposure was assessed by land-use regression models for copper (Cu), iron (Fe) and zinc (Zn) representing non-tailpipe traffic emissions; sulphur (S) indicating long-range transport; nickel (Ni) and vanadium (V) for mixed oil-burning and industry; silicon (Si) for crustal material and potassium (K) for biomass burning. Cox regression models with adjustment for potential confounders were used for cohort-specific analyses. Combined estimates were determined with random effects meta-analyses.Results: Ten cohorts in six countries contributed data on 227,044 individuals with an average follow-up of 14.9 years with 633 incident cases of gastric cancer and 763 of UADT cancer. The combined hazard ratio (HR) for an increase of 200 ng/m(3) of PM2.5_S was 1.92 (95%-confidence interval (95%-CI) 1.13; 3.27) for gastric cancer, with no indication of heterogeneity between cohorts (I-2= 0%), and 1.63 (95%-CI 0.88; 3.01) for PM2.5_Zn (I-2= 70%). For the other elements in PM2.5 and all elements in PM10 including PM10_S, non-significant HRs between 0.78 and 1.21 with mostly wide CIs were seen. No association was found between any of the elements and UADT cancer. The HR for PM2.5_S and gastric cancer was robust to adjustment for additional factors, including diet, and restriction to study participants with stable addresses over follow-up resulted in slightly higher effect estimates with a decrease in precision. In a two-pollutant model, the effect estimate for total PM2.5 decreased whereas that for PM2.5_S was robust.Conclusion: This large multicentre cohort study shows a robust association between gastric cancer and long-term exposure to PM2.5 S but not PM10 S, suggesting that S in PM2.5 or correlated air pollutants may contribute to the risk of gastric cancer.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-10 of 10

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view