SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Nieuwdorp M.) srt2:(2020-2023)"

Search: WFRF:(Nieuwdorp M.) > (2020-2023)

  • Result 1-10 of 26
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • De Groot, P., et al. (author)
  • Donor metabolic characteristics drive effects of faecal microbiota transplantation on recipient insulin sensitivity, energy expenditure and intestinal transit time
  • 2020
  • In: Gut. - : BMJ. - 0017-5749 .- 1468-3288. ; 69, s. 502-512
  • Journal article (peer-reviewed)abstract
    • Objective: Bariatric surgery improves glucose metabolism. Recent data suggest that faecal microbiota transplantation (FMT) using faeces from postbariatric surgery diet-induced obese mice in germ-free mice improves glucose metabolism and intestinal homeostasis. We here investigated whether allogenic FMT using faeces from post-Roux-en-Y gastric bypass donors (RYGB-D) compared with using faeces from metabolic syndrome donors (METS-D) has short-term effects on glucose metabolism, intestinal transit time and adipose tissue inflammation in treatment-naïve, obese, insulin-resistant male subjects. Design: Subjects with metabolic syndrome (n=22) received allogenic FMT either from RYGB-D or METS-D. Hepatic and peripheral insulin sensitivity as well as lipolysis were measured at baseline and 2 weeks after FMT by hyperinsulinaemic euglycaemic stable isotope (2H2-glucose and 2H5-glycerol) clamp. Secondary outcome parameters were changes in resting energy expenditure, intestinal transit time, faecal short-chain fatty acids (SCFA) and bile acids, and inflammatory markers in subcutaneous adipose tissue related to intestinal microbiota composition. Faecal SCFA, bile acids, glycaemic control and inflammatory parameters were also evaluated at 8 weeks. Results: We observed a significant decrease in insulin sensitivity 2 weeks after allogenic METS-D FMT (median rate of glucose disappearance: from 40.6 to 34.0 μmol/kg/min; p<0.01). Moreover, a trend (p=0.052) towards faster intestinal transit time following RYGB-D FMT was seen. Finally, we observed changes in faecal bile acids (increased lithocholic, deoxycholic and (iso)lithocholic acid after METS-D FMT), inflammatory markers (decreased adipose tissue chemokine ligand 2 (CCL2) gene expression and plasma CCL2 after RYGB-D FMT) and changes in several intestinal microbiota taxa. Conclusion: Allogenic FMT using METS-D decreases insulin sensitivity in metabolic syndrome recipients when compared with using post-RYGB-D. Further research is needed to delineate the role of donor characteristics in FMT efficacy in human insulin-resistant subjects. Trial registration number: NTR4327.
  •  
2.
  • Koopen, A., et al. (author)
  • Duodenal Anaerobutyricum soehngenii infusion stimulates GLP-1 production, ameliorates glycaemic control and beneficially shapes the duodenal transcriptome in metabolic syndrome subjects: a randomised double-blind placebo-controlled cross-over study
  • 2022
  • In: Gut. - : BMJ. - 0017-5749 .- 1468-3288. ; 71:8, s. 1577-1587
  • Journal article (peer-reviewed)abstract
    • Objective Although gut dysbiosis is increasingly recognised as a pathophysiological component of metabolic syndrome (MetS), the role and mode of action of specific gut microbes in metabolic health remain elusive. Previously, we identified the commensal butyrogenic Anaerobutyricum soehngenii to be associated with improved insulin sensitivity in subjects with MetS. In this proof-of-concept study, we investigated the potential therapeutic effects of A. soehngenii L2-7 on systemic metabolic responses and duodenal transcriptome profiles in individuals with MetS. Design In this randomised double-blind placebo-controlled cross-over study, 12 male subjects with MetS received duodenal infusions of A. soehngenii/ placebo and underwent duodenal biopsies, mixed meal tests (6 hours postinfusion) and 24-hour continuous glucose monitoring. Results A. soehngenii treatment provoked a markedly increased postprandial excursion of the insulinotropic hormone glucagon-like peptide 1 (GLP-1) and an elevation of plasma secondary bile acids, which were positively associated with GLP-1 levels. Moreover, A. soehngenii treatment robustly shaped the duodenal expression of 73 genes, with the highest fold induction in the expression of regenerating islet-protein 1B (REG1B)-encoding gene. Strikingly, duodenal REG1B expression positively correlated with GLP-1 levels and negatively correlated with peripheral glucose variability, which was significantly diminished in the 24 hours following A. soehngenii intake. Mechanistically, Reg1B expression is induced upon sensing butyrate or bacterial peptidoglycan. Importantly, A. soehngenii duodenal administration was safe and well tolerated. Conclusions A single dose of A. soehngenii improves peripheral glycaemic control within 24 hours; it specifically stimulates intestinal GLP-1 production and REG1B expression. Further studies are needed to delineate the specific pathways involved in REG1B induction and function in insulin sensitivity.
  •  
3.
  • Meijnikman, A. S., et al. (author)
  • Microbiome-derived ethanol in nonalcoholic fatty liver disease
  • 2022
  • In: Nature Medicine. - : Springer Science and Business Media LLC. - 1078-8956 .- 1546-170X. ; 28:10, s. 2100-2106
  • Journal article (peer-reviewed)abstract
    • A new study examines microbiome-generated ethanol in individuals with and without nonalcoholic fatty liver disease (NAFLD), concluding that microbial ethanol might contribute to pathogenesis in some patients with NAFLD. To test the hypothesis that the gut microbiota of individuals with nonalcoholic fatty liver disease (NAFLD) produce enough ethanol to be a driving force in the development and progression of this complex disease, we performed one prospective clinical study and one intervention study. Ethanol was measured while fasting and 120 min after a mixed meal test (MMT) in 146 individuals. In a subset of 37 individuals and in an external validation cohort, ethanol was measured in portal vein blood. In an intervention study, ten individuals with NAFLD and ten overweight but otherwise healthy controls were infused with a selective alcohol dehydrogenase (ADH) inhibitor before an MMT. When compared to fasted peripheral blood, median portal vein ethanol concentrations were 187 (interquartile range (IQR), 17-516) times higher and increased with disease progression from 2.1 mM in individuals without steatosis to 8.0 mM in NAFL 21.0 mM in nonalcoholic steatohepatitis. Inhibition of ADH induced a 15-fold (IQR,1.6- to 20-fold) increase in peripheral blood ethanol concentrations in individuals with NAFLD, although this effect was abolished after antibiotic treatment. Specifically, Lactobacillaceae correlated with postprandial peripheral ethanol concentrations (Spearman's rho, 0.42; P < 10(-5)) in the prospective study. Our data show that the first-pass effect obscures the levels of endogenous ethanol production, suggesting that microbial ethanol could be considered in the pathogenesis of this highly prevalent liver disease.
  •  
4.
  • Warmbrunn, M. V., et al. (author)
  • Metabolite Profile of Treatment-Naive Metabolic Syndrome Subjects in Relation to Cardiovascular Disease Risk
  • 2021
  • In: Metabolites. - : MDPI AG. - 2218-1989. ; 11:4
  • Journal article (peer-reviewed)abstract
    • Metabolic syndrome (MetSyn) is an important risk factor for type 2 diabetes and cardiovascular diseases (CVD). This study aimed to find distinct plasma metabolite profiles between insulin-resistant and non-insulin resistant subjects with MetSyn and evaluate if MetSyn metabolite profiles are related to CVD risk and lipid fluxes. In a cross-sectional study, untargeted metabolomics of treatment-naive males with MetSyn (n = 132) were analyzed together with clinical parameters. In a subset of MetSyn participants, CVD risk was calculated using the Framingham score (n = 111), and lipolysis (n = 39) was measured by a two-step hyperinsulinemic euglycemic clamp using [1,1,2,3,3-(2)H5] glycerol to calculate lipolysis suppression rates. Peripheral insulin resistance was related to fatty acid metabolism and glycerolphosphorylcholine. Interestingly, although insulin resistance is considered to be a risk factor for CVD, we observed that there was little correspondence between metabolites associated with insulin resistance and metabolites associated with CVD risk. The latter mainly belonged to the androgenic steroid, fatty acid, phosphatidylethanolamine, and phophatidylcholine pathways. These data provide new insights into metabolic changes in mild MetSyn pathophysiology and MetSyn CVD risk related to lipid metabolism. Prospective studies may focus on the pathophysiological role of the here-identified biomarkers.
  •  
5.
  • Fluitman, K. S., et al. (author)
  • Gut microbial characteristics in poor appetite and undernutrition: a cohort of older adults and microbiota transfer in germ-free mice
  • 2022
  • In: Journal of Cachexia Sarcopenia and Muscle. - : Wiley. - 2190-5991 .- 2190-6009. ; 13:4, s. 2188-2201
  • Journal article (peer-reviewed)abstract
    • Background Older adults are particularly prone to the development of poor appetite and undernutrition. Possibly, this is partly due to the aged gut microbiota. We aimed to evaluate the gut microbiota in relation to both poor appetite and undernutrition in community-dwelling older adults. Furthermore, we studied the causal effects of the microbiota on body weight and body composition by transferring faecal microbiota from cohort participants into germ-free mice. Methods First, we conducted a cross-sectional cohort study of 358 well-phenotyped Dutch community-dwelling older adults from the Longitudinal Aging Study Amsterdam. Data collection included body measurements, a faecal and blood sample, as well as extensive questionnaires on appetite, dietary intake, and nutritional status. Appetite was assessed by the Council of Nutrition Appetite Questionnaire (CNAQ) and undernutrition was defined by either a low body mass index (BMI) (BMI < 20 kg/m(2) if <70 years or BMI < 22 kg/m(2) if >= 70 years) or >5% body weight loss averaged over the last 2 years. Gut microbiota composition was determined with 16S rRNA sequencing. Next, we transferred faecal microbiota from 12 cohort participants with and without low BMI or recent weight loss into a total of 41 germ-free mice to study the potential causal effects of the gut microbiota on host BMI and body composition. Results The mean age (range) of our cohort was 73 (65-93); 58.4% was male. Seventy-seven participants were undernourished and 21 participants had poor appetite (CNAQ < 28). A lower abundance of the genus Blautia was associated with undernutrition (log2 fold change = -0.57, Benjamini-Hochberg-adjusted P = 0.008), whereas higher abundances of taxa from Lachnospiraceae, Ruminococcaceae UCG-002, Parabacteroides merdae, and Dorea formicigenerans were associated with poor appetite. Furthermore, participants with poor appetite or undernutrition had reduced levels of faecal acetate (P = 0.006 and 0.026, respectively). Finally, there was a trend for the mice that received faecal microbiota from older adults with low BMI to weigh 1.26 g less after 3 weeks (P = 0.086) and have 6.13% more lean mass (in % body weight, P = 0.067) than the mice that received faecal microbiota from older adults without low BMI or recent weight loss. Conclusions This study demonstrates several associations of the gut microbiota with both poor appetite and undernutrition in older adults. Moreover, it is the first to explore a causal relation between the aged gut microbiota and body weight and body composition in the host. Possibly, microbiota-manipulating strategies will benefit older adults prone to undernutrition.
  •  
6.
  • Bel Lassen, P., et al. (author)
  • Protein intake, metabolic status and the gut microbiota in different ethnicities: Results from two independent cohorts
  • 2021
  • In: Nutrients. - : MDPI AG. - 2072-6643. ; 13:9
  • Journal article (peer-reviewed)abstract
    • Background: Protein intake has been associated with the development of pre-diabetes (pre-T2D) and type 2 diabetes (T2D). The gut microbiota has the capacity to produce harmful metabolites derived from dietary protein. Furthermore, both the gut microbiota composition and metabolic status (e.g., insulin resistance) can be modulated by diet and ethnicity. However, to date most studies have predominantly focused on carbohydrate and fiber intake with regards to metabolic status and gut microbiota composition. Objectives: To determine the associations between dietary protein intake, gut microbiota composition, and metabolic status in different ethnicities. Methods: Separate cross-sectional analysis of two European cohorts (MetaCardis, n = 1759; HELIUS, n = 1528) including controls, patients with pre-T2D, and patients with T2D of Caucasian/non-Caucasian origin with nutritional data obtained from Food Frequency Questionnaires and gut microbiota composition. Results: In both cohorts, animal (but not plant) protein intake was associated with pre-T2D status and T2D status after adjustment for confounders. There was no significant association between protein intake (total, animal, or plant) with either gut microbiota alpha diversity or beta diversity, regardless of ethnicity. At the species level, we identified taxonomical signatures associated with animal protein intake that overlapped in both cohorts with different abundances according to metabolic status and ethnicity. Conclusions: Animal protein intake is associated with pre-T2D and T2D status but not with gut microbiota beta or alpha diversity, regardless of ethnicity. Gut microbial taxonomical signatures were identified, which could function as potential modulators in the association between dietary protein intake and metabolic status. © 2021 by the authors. Licensee MDPI, Basel, Switzerland.
  •  
7.
  • Koopen, A. M., et al. (author)
  • Plasma Metabolites Related to Peripheral and Hepatic Insulin Sensitivity Are Not Directly Linked to Gut Microbiota Composition
  • 2020
  • In: Nutrients. - : MDPI AG. - 2072-6643. ; 12:8
  • Journal article (peer-reviewed)abstract
    • Plasma metabolites affect a range of metabolic functions in humans, including insulin sensitivity (IS). A subset of these plasma metabolites is modified by the gut microbiota. To identify potential microbial-metabolite pathways involved in IS, we investigated the link between plasma metabolites, gut microbiota composition, and IS, using the gold-standard for peripheral and hepatic IS measurement in a group of participants with metabolic syndrome (MetSyn). In a cross-sectional study with 115 MetSyn participants, fasting plasma samples were collected for untargeted metabolomics analysis and fecal samples for 16S rRNA gene amplicon sequencing. A two-step hyperinsulinemic euglycemic clamp was performed to assess peripheral and hepatic IS. Collected data were integrated and potential interdependence between metabolites, gut microbiota, and IS was analyzed using machine learning prediction models. Plasma metabolites explained 13.2% and 16.7% of variance in peripheral and hepatic IS, respectively. Fecal microbiota composition explained 4.2% of variance in peripheral IS and was not related to hepatic IS. Although metabolites could partially explain the variances in IS, the top metabolites related to peripheral and hepatic IS did not significantly correlate with gut microbiota composition (both on taxonomical level and alpha-diversity). However, all plasma metabolites could explain 18.5% of the variance in microbial alpha-diversity (Shannon); the top 20 metabolites could even explain 44.5% of gut microbial alpha-diversity. In conclusion, plasma metabolites could partially explain the variance in peripheral and hepatic IS; however, these metabolites were not directly linked to the gut microbiota composition, underscoring the intricate relation between plasma metabolites, the gut microbiota, and IS in MetSyn
  •  
8.
  • Kullberg, R. F. J., et al. (author)
  • Gut microbiota of adults with asthma is broadly similar to non-asthmatics in a large population with varied ethnic origins
  • 2021
  • In: Gut Microbes. - : Informa UK Limited. - 1949-0976 .- 1949-0984. ; 13:1
  • Journal article (peer-reviewed)abstract
    • Bacterial gut communities might predispose children to develop asthma. Yet, little is known about the role of these micro-organisms in adult asthmatics. We aimed to profile the relationship between fecal microbiota and asthma in a large-scale, ethnically diverse, observational cohort of adults. Fecal microbiota composition of 1632 adults (172 asthmatics and 1460 non-asthmatics) was analyzed using 16S ribosomal RNA gene sequencing. Using extremely randomized trees machine learning models, we assessed the discriminatory ability of gut bacterial features to identify asthmatics from non-asthmatics. Asthma contributed 0.019% to interindividual dissimilarities in intestinal microbiota composition, which was not significant (P = .97). Asthmatics could not be distinguished from non-asthmatics based on individual microbiota composition by an extremely randomized trees classifier model (area under the receiver operating characteristic curve = 0.54). In conclusion, there were no prominent differences in fecal microbiota composition in adult asthmatics when compared to non-asthmatics in an urban, large-sized and ethnically diverse cohort.
  •  
9.
  • van Lier, Y. F., et al. (author)
  • Donor fecal microbiota transplantation ameliorates intestinal graft-versus-host disease in allogeneic hematopoietic cell transplant recipients
  • 2020
  • In: Science Translational Medicine. - : American Association for the Advancement of Science (AAAS). - 1946-6234 .- 1946-6242. ; 12:556
  • Journal article (peer-reviewed)abstract
    • Disruption of the intestinal microbiota occurs frequently in allogeneic hematopoietic cell transplantation (allo-HCT) recipients and predisposes them to development of graft-versus-host disease (GvHD). In a prospective, single-center, single-arm study, we investigated the effect of donor fecal microbiota transplantation (FMT) on symptoms of steroid-refractory or steroid-dependent, acute or late-onset acute intestinal GvHD in 15 individuals who had undergone allo-HCT. Study participants received a fecal suspension from an unrelated healthy donor via nasoduodenal infusion. Donor FMT was well tolerated, and infection-related adverse events did not seem to be related to the FMT procedure. In 10 of 15 study participants, a complete clinical response was observed within 1 month after FMT, without additional interventions to alleviate GvHD symptoms. This response was accompanied by an increase in gut microbial a-diversity, a partial engraft-ment of donor bacterial species, and increased abundance of butyrate-producing bacteria, including Clostridiales and Blautia species. In 6 of the 10 responding donor FMT recipients, immunosuppressant drug therapy was successfully tapered. Durable remission of steroid-refractory or steroid-dependent GvHD after donor FMT was associated with improved survival at 24 weeks after donor FMT. This study highlights the potential of donor FMT as a treatment for steroid-refractory or steroid-dependent GvHD, but larger clinical trials are needed to confirm the safety and efficacy of this procedure.
  •  
10.
  • Van Olden, C. C., et al. (author)
  • A systems biology approach to understand gut microbiota and host metabolism in morbid obesity: design of the BARIA Longitudinal Cohort Study
  • 2021
  • In: Journal of Internal Medicine. - : Wiley. - 0954-6820 .- 1365-2796. ; 289:3, s. 340-354
  • Journal article (peer-reviewed)abstract
    • Introduction Prevalence of obesity and associated diseases, including type 2 diabetes mellitus, dyslipidaemia and non-alcoholic fatty liver disease (NAFLD), are increasing. Underlying mechanisms, especially in humans, are unclear. Bariatric surgery provides the unique opportunity to obtain biopsies and portal vein blood-samples. Methods The BARIA Study aims to assess how microbiota and their metabolites affect transcription in key tissues and clinical outcome in obese subjects and how baseline anthropometric and metabolic characteristics determine weight loss and glucose homeostasis after bariatric surgery. We phenotype patients undergoing bariatric surgery (predominantly laparoscopic Roux-en-Y gastric bypass), before weight loss, with biometrics, dietary and psychological questionnaires, mixed meal test (MMT) and collect fecal-samples and intra-operative biopsies from liver, adipose tissues and jejunum. We aim to include 1500 patients. A subset (approximately 25%) will undergo intra-operative portal vein blood-sampling. Fecal-samples are analyzed with shotgun metagenomics and targeted metabolomics, fasted and postprandial plasma-samples are subjected to metabolomics, and RNA is extracted from the tissues for RNAseq-analyses. Data will be integrated using state-of-the-art neuronal networks and metabolic modeling. Patient follow-up will be ten years. Results Preoperative MMT of 170 patients were analysed and clear differences were observed in glucose homeostasis between individuals. Repeated MMT in 10 patients showed satisfactory intra-individual reproducibility, with differences in plasma glucose, insulin and triglycerides within 20% of the mean difference. Conclusion The BARIA study can add more understanding in how gut-microbiota affect metabolism, especially with regard to obesity, glucose metabolism and NAFLD. Identification of key factors may provide diagnostic and therapeutic leads to control the obesity-associated disease epidemic.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-10 of 26

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view