SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Ninalga Christina) srt2:(2005)"

Search: WFRF:(Ninalga Christina) > (2005)

  • Result 1-2 of 2
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Loskog, Angelica, 1973-, et al. (author)
  • Optimization of the MB49 mouse bladder cancer model for adenoviral gene therapy
  • 2005
  • In: Laboratory Animals. - : SAGE Publications. - 0023-6772 .- 1758-1117. ; 39:4, s. 384-393
  • Journal article (peer-reviewed)abstract
    • Bladder cancer is regarded as a promising candidate for innovative therapies in the field of immune and gene therapy. In this paper, we present the subcutaneous, metastatic and a novel orthotopic model of murine MB49 bladder cancer in C57BL/6 mice. We further show the potential of using adenoviral vectors together with different transduction enhancers to augment in vivo gene delivery. Finally, we present candidate genes for tumour detection, therapy or targeting. The MB49 tumour grew rapidly in mice. The subcutaneous model allowed for tumour detection within a week and the possibility to monitor growth rate on a day-by-day basis. Injection of MB49 cells intravenously into the tail vein gave rise to lung metastases within 16 days, while instillation of tumour cells into pretreated bladders led to a survival time of 20-40 days. Adenoviral vectors can be used as a vehicle for gene transfer to the bladder. By far, the most potent transduction enhancer was Clorpactin, also known as oxychlorosene. Last, we show that MB49 cells express tumour-associated antigens like bladder cancer-4, prostate stem cell antigen and six-transmembrane epithelial antigen of the prostate. Given the possibility for efficient genetic modification of the bladder and the presence of known tumour antigens, the MB49 models can be used in innovative ways to explore immunogene therapy.
  •  
2.
  • Ninalga, Christina, et al. (author)
  • CpG oligonucleotide therapy cures subcutaneous and orthotopic tumors and evokes protective immunity in murine bladder cancer
  • 2005
  • In: Journal of immunotherapy (1997). - 1524-9557 .- 1537-4513. ; 28:1, s. 20-27
  • Journal article (peer-reviewed)abstract
    • Bacillus Calmette-Guerin (BCG) instillation is standard immunotherapy for superficial bladder carcinoma. However, many patients become refractory to BCG, giving impetus to the development of alternative therapies. CpG oligodeoxynucleotide (ODN) therapy has been shown to promote T(H)1-oriented antitumor responses in various tumor models. To investigate its therapeutic effect in bladder cancer, we used different CpG ODNs to treat C57BL/6 mice bearing the subcutaneous murine bladder tumor MB49. CpG type B ODN 1668 was superior at inhibiting tumor growth, leading to complete regression of large tumors. More importantly, CpG ODN 1668 also regressed orthotopically growing MB49 tumors for the first time. Rechallenge of CpG ODN-cured mice with MB49 showed that a majority of the mice were protected long term, demonstrating that CpG ODN therapy evokes a memory response. Adenoviral vectors (Ad) encoding CD40L, tumor necrosis factor-related activation-induced cytokine, lymphotactin, interleukin (IL) 2, and IL-15 were also investigated. AdCD40L and AdIL-15 transduction could abolish MB49 tumorigenicity, and these vectors were combined with CpG ODN 1668 to investigate any enhanced effects. No such effects were seen. All groups of mice treated with CpG ODNs, alone or in combination with adenoviral vector, exhibited increased serum concentrations of IL-12, indicative of a T(H)1 response. Our results show that CpG ODN therapy cures established subcutaneous and orthotopic bladder cancer via a T(H)1-mediated response and provides long-lasting protective immunity.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-2 of 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view