SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Nordsletten D) "

Search: WFRF:(Nordsletten D)

  • Result 1-10 of 17
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Marlevi, David, et al. (author)
  • Estimation of Cardiovascular Relative Pressure Using Virtual Work-Energy
  • 2019
  • In: Scientific Reports. - : Nature Publishing Group. - 2045-2322. ; 9:1
  • Journal article (peer-reviewed)abstract
    • Many cardiovascular diseases lead to local increases in relative pressure, reflecting the higher costs of driving blood flow. The utility of this biomarker for stratifying the severity of disease has thus driven the development of methods to measure these relative pressures. While intravascular catheterisation remains the most direct measure, its invasiveness limits clinical application in many instances. Non-invasive Doppler ultrasound estimates have partially addressed this gap; however only provide relative pressure estimates for a range of constricted cardiovascular conditions. Here we introduce a non-invasive method that enables arbitrary interrogation of relative pressures throughout an imaged vascular structure, leveraging modern phase contrast magnetic resonance imaging, the virtual work-energy equations, and a virtual field to provide robust and accurate estimates. The versatility and accuracy of the method is verified in a set of complex patient-specific cardiovascular models, where relative pressures into previously inaccessible flow regions are assessed. The method is further validated within a cohort of congenital heart disease patients, providing a novel tool for probing relative pressures in-vivo.
  •  
2.
  • Marlevi, David, doktorand, et al. (author)
  • Non-invasive estimation of relative pressure in turbulent flow using virtual work-energy
  • 2020
  • In: Medical Image Analysis. - : Elsevier B.V.. - 1361-8415 .- 1361-8423. ; 60
  • Journal article (peer-reviewed)abstract
    • Vascular pressure differences are established risk markers for a number of cardiovascular diseases. Relative pressures are, however, often driven by turbulence-induced flow fluctuations, where conventional non-invasive methods may yield inaccurate results. Recently, we proposed a novel method for non-turbulent flows, νWERP, utilizing the concept of virtual work-energy to accurately probe relative pressure through complex branching vasculature. Here, we present an extension of this approach for turbulent flows: νWERP-t. We present a theoretical method derivation based on flow covariance, quantifying the impact of flow fluctuations on relative pressure. νWERP-t is tested on a set of in-vitro stenotic flow phantoms with data acquired by 4D flow MRI with six-directional flow encoding, as well as on a patient-specific in-silico model of an acute aortic dissection. Over all tests νWERP-t shows improved accuracy over alternative energy-based approaches, with excellent recovery of estimated relative pressures. In particular, the use of a guaranteed divergence-free virtual field improves accuracy in cases where turbulent flows skew the apparent divergence of the acquired field. With the original νWERP allowing for assessment of relative pressure into previously inaccessible vasculatures, the extended νWERP-t further enlarges the method's clinical scope, underlining its potential as a novel tool for assessing relative pressure in-vivo.
  •  
3.
  •  
4.
  •  
5.
  • De Vecchi, A., et al. (author)
  • Left ventricular outflow obstruction predicts increase in systolic pressure gradients and blood residence time after transcatheter mitral valve replacement
  • 2018
  • In: Scientific Reports. - : Nature Publishing Group. - 2045-2322. ; 8:1
  • Journal article (peer-reviewed)abstract
    • Left ventricular outflow tract (LVOT) obstruction is a relatively common consequence of transcatheter mitral valve replacement (TMVR). Although LVOT obstruction is associated with heart failure and adverse remodelling, its effects upon left ventricular hemodynamics remain poorly characterised. This study uses validated computational models to identify the LVOT obstruction degree that causes significant changes in ventricular hemodynamics after TMVR. Seven TMVR patients underwent personalised flow simulations based on pre-procedural imaging data. Different virtual valve configurations were simulated in each case, for a total of 32 simulations, and the resulting obstruction degree was correlated with pressure gradients and flow residence times. These simulations identified a threshold LVOT obstruction degree of 35%, beyond which significant deterioration of systolic function was observed. The mean increase from baseline (pre-TMVR) in the peak systolic pressure gradient rose from 5.7% to 30.1% above this threshold value. The average blood volume staying inside the ventricle for more than two cycles also increased from 4.4% to 57.5% for obstruction degrees above 35%, while the flow entering and leaving the ventricle within one cycle decreased by 13.9%. These results demonstrate the unique ability of modelling to predict the hemodynamic consequences of TMVR and to assist in the clinical decision-making process.
  •  
6.
  •  
7.
  •  
8.
  •  
9.
  • Ivanov, V. Z., et al. (author)
  • Heritability of hoarding symptoms across adolescence and young adulthood: A longitudinal twin study
  • 2017
  • In: PLoS ONE. - : Public Library of Science (PLoS). - 1932-6203. ; 12:6
  • Journal article (peer-reviewed)abstract
    • Background Twin studies of hoarding symptoms indicate low to moderate heritability during adolescence and considerably higher heritability in older samples, suggesting dynamic developmental etiological effects. The aim of the current study was to estimate the relative contribution of additive genetic and environmental effects to hoarding symptoms during adolescence and young adulthood and to estimate the sources of stability and change of hoarding symptoms during adolescence. Univariate model-fitting was conducted in three cohorts of twins aged 15 (n = 7,905), 18 (n = 2,495) and 20-28 (n = 6,218). Longitudinal analyses were conducted in a subsample of twins for which data on hoarding symptoms was available at both age 15 and 18 (n = 1,701). Heritability estimates for hoarding symptoms at ages 15, 18 and 20-28 were 41% (95% confidence interval [CI]: 36-45%), 31% (95% CI: 22-39%) and 29% (95% CI: 24-34%) respectively. Quantitative sex-differences emerged in twins aged 15 at which point the heritability in boys was 33% (95% CI: 22-41%) and 17% (95% CI: 0-36%) in girls. Shared environmental effects played a negligible role across all samples with the exception of girls aged 15 where they accounted for a significant proportion of the variance (22%; 95% CI 6-36%). The longitudinal bivariate analyses revealed a significant phenotypic correlation of hoarding symptoms between ages 15 and 18 (0.40; 95% CI: 0.36-0.44) and a strong but imperfect genetic correlation (0.75; 95% CI: 0.57-0.94). The bivariate heritability was estimated to 65% (95% CI: 50-79%). Hoarding symptoms are heritable from adolescence throughout young adulthood, although heritability appears to slightly decrease over time. Shared environmental effects contribute to hoarding symptoms only in girls at age 15. The stability of hoarding symptoms between ages 15 and 18 is largely explained by genetic factors, while non-shared environmental factors primarily have a time-specific effect. The findings indicate that dynamic developmental etiological effects may be operating across the life span.
  •  
10.
  • Marlevi, David, doktorand, et al. (author)
  • Altered Aortic Hemodynamics and Relative Pressure in Patients with Dilated Cardiomyopathy
  • 2021
  • In: Journal of Cardiovascular Translational Research. - : Springer Nature. - 1937-5387 .- 1937-5395.
  • Journal article (peer-reviewed)abstract
    • Ventricular-vascular interaction is central in the adaptation to cardiovascular disease. However, cardiomyopathy patients are predominantly monitored using cardiac biomarkers. The aim of this study is therefore to explore aortic function in dilated cardiomyopathy (DCM). Fourteen idiopathic DCM patients and 16 controls underwent cardiac magnetic resonance imaging, with aortic relative pressure derived using physics-based image processing and a virtual cohort utilized to assess the impact of cardiovascular properties on aortic behaviour. Subjects with reduced left ventricular systolic function had significantly reduced aortic relative pressure, increased aortic stiffness, and significantly delayed time-to-pressure peak duration. From the virtual cohort, aortic stiffness and aortic volumetric size were identified as key determinants of aortic relative pressure. As such, this study shows how advanced flow imaging and aortic hemodynamic evaluation could provide novel insights into the manifestation of DCM, with signs of both altered aortic structure and function derived in DCM using our proposed imaging protocol. Graphic Abstractr: [Figure not available: see fulltext.].
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-10 of 17

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view