SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(O'Toole K) srt2:(2020-2024)"

Search: WFRF:(O'Toole K) > (2020-2024)

  • Result 1-10 of 11
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Munn-Chernoff, M. A., et al. (author)
  • Shared genetic risk between eating disorder- and substance-use-related phenotypes: Evidence from genome-wide association studies
  • 2021
  • In: Addiction Biology. - : Wiley. - 1355-6215 .- 1369-1600. ; 26:1
  • Journal article (peer-reviewed)abstract
    • Eating disorders and substance use disorders frequently co-occur. Twin studies reveal shared genetic variance between liabilities to eating disorders and substance use, with the strongest associations between symptoms of bulimia nervosa and problem alcohol use (genetic correlation [r(g)], twin-based = 0.23-0.53). We estimated the genetic correlation between eating disorder and substance use and disorder phenotypes using data from genome-wide association studies (GWAS). Four eating disorder phenotypes (anorexia nervosa [AN], AN with binge eating, AN without binge eating, and a bulimia nervosa factor score), and eight substance-use-related phenotypes (drinks per week, alcohol use disorder [AUD], smoking initiation, current smoking, cigarettes per day, nicotine dependence, cannabis initiation, and cannabis use disorder) from eight studies were included. Significant genetic correlations were adjusted for variants associated with major depressive disorder and schizophrenia. Total study sample sizes per phenotype ranged from similar to 2400 to similar to 537 000 individuals. We used linkage disequilibrium score regression to calculate single nucleotide polymorphism-based genetic correlations between eating disorder- and substance-use-related phenotypes. Significant positive genetic associations emerged between AUD and AN (r(g) = 0.18; false discovery rate q = 0.0006), cannabis initiation and AN (r(g) = 0.23; q < 0.0001), and cannabis initiation and AN with binge eating (r(g) = 0.27; q = 0.0016). Conversely, significant negative genetic correlations were observed between three nondiagnostic smoking phenotypes (smoking initiation, current smoking, and cigarettes per day) and AN without binge eating (r(gs) = -0.19 to -0.23; qs < 0.04). The genetic correlation between AUD and AN was no longer significant after co-varying for major depressive disorder loci. The patterns of association between eating disorder- and substance-use-related phenotypes highlights the potentially complex and substance-specific relationships among these behaviors.
  •  
2.
  • Bryois, J., et al. (author)
  • Genetic identification of cell types underlying brain complex traits yields insights into the etiology of Parkinson’s disease
  • 2020
  • In: Nature Genetics. - : Springer Science and Business Media LLC. - 1061-4036 .- 1546-1718. ; 52:5, s. 482-493
  • Journal article (peer-reviewed)abstract
    • Genome-wide association studies have discovered hundreds of loci associated with complex brain disorders, but it remains unclear in which cell types these loci are active. Here we integrate genome-wide association study results with single-cell transcriptomic data from the entire mouse nervous system to systematically identify cell types underlying brain complex traits. We show that psychiatric disorders are predominantly associated with projecting excitatory and inhibitory neurons. Neurological diseases were associated with different cell types, which is consistent with other lines of evidence. Notably, Parkinson’s disease was genetically associated not only with cholinergic and monoaminergic neurons (which include dopaminergic neurons) but also with enteric neurons and oligodendrocytes. Using post-mortem brain transcriptomic data, we confirmed alterations in these cells, even at the earliest stages of disease progression. Our study provides an important framework for understanding the cellular basis of complex brain maladies, and reveals an unexpected role of oligodendrocytes in Parkinson’s disease. © 2020, The Author(s), under exclusive licence to Springer Nature America, Inc.
  •  
3.
  •  
4.
  •  
5.
  • Cronin, O., et al. (author)
  • Role of the Microbiome in Regulating Bone Metabolism and Susceptibility to Osteoporosis
  • 2022
  • In: Calcified Tissue International. - : Springer Science and Business Media LLC. - 0171-967X .- 1432-0827. ; 110:3, s. 273-284
  • Journal article (peer-reviewed)abstract
    • The human microbiota functions at the interface between diet, medication-use, lifestyle, host immune development and health. It is therefore closely aligned with many of the recognised modifiable factors that influence bone mass accrual in the young, and bone maintenance and skeletal decline in older populations. While understanding of the relationship between micro-organisms and bone health is still in its infancy, two decades of broader microbiome research and discovery supports a role of the human gut microbiome in the regulation of bone metabolism and pathogenesis of osteoporosis as well as its prevention and treatment. Pre-clinical research has demonstrated biological interactions between the microbiome and bone metabolism. Furthermore, observational studies and randomized clinical trials have indicated that therapeutic manipulation of the microbiota by oral administration of probiotics may influence bone turnover and prevent bone loss in humans. In this paper, we summarize the content, discussion and conclusions of a workshop held by the Osteoporosis and Bone Research Academy of the Royal Osteoporosis Society in October, 2020. We provide a detailed review of the literature examining the relationship between the microbiota and bone health in animal models and in humans, as well as formulating the agenda for key research priorities required to advance this field. We also underscore the potential pitfalls in this research field that should be avoided and provide methodological recommendations to facilitate bridging the gap from promising concept to a potential cause and intervention target for osteoporosis.
  •  
6.
  •  
7.
  • Watson, Hunna J., et al. (author)
  • Common Genetic Variation and Age of Onset of Anorexia Nervosa
  • 2022
  • In: BIOLOGICAL PSYCHIATRY: GLOBAL OPEN SCIENCE. - : Elsevier BV. - 2667-1743. ; 2:4, s. 368-378
  • Journal article (peer-reviewed)abstract
    • BACKGROUND: Genetics and biology may influence the age of onset of anorexia nervosa (AN). The aims of this study were to determine whether common genetic variation contributes to age of onset of AN and to investigate the genetic associations between age of onset of AN and age at menarche.METHODS: A secondary analysis of the Psychiatric Genomics Consortium genome-wide association study (GWAS) of AN was performed, which included 9335 cases and 31,981 screened controls, all from European ancestries. We conducted GWASs of age of onset, early-onset AN (,13 years), and typical-onset AN, and genetic correlation, genetic risk score, and Mendelian randomization analyses.RESULTS: Two loci were genome-wide significant in the typical-onset AN GWAS. Heritability estimates (single nucleotide polymorphism-h2) were 0.01-0.04 for age of onset, 0.16-0.25 for early-onset AN, and 0.17-0.25 for typical-onset AN. Early-and typical-onset AN showed distinct genetic correlation patterns with putative risk factors for AN. Specifically, early-onset AN was significantly genetically correlated with younger age at menarche, and typical-onset AN was significantly negatively genetically correlated with anthropometric traits. Genetic risk scores for age of onset and early-onset AN estimated from independent GWASs significantly predicted age of onset. Mendelian randomization analysis suggested a causal link between younger age at menarche and early -onset AN.CONCLUSIONS: Our results provide evidence consistent with a common variant genetic basis for age of onset and implicate biological pathways regulating menarche and reproduction.
  •  
8.
  • Almeamar, Hussein, et al. (author)
  • Real-world efficacy of lutetium peptide receptor radionuclide therapy in patients with neuroendocrine tumours
  • 2022
  • In: Journal of neuroendocrinology. - : John Wiley & Sons. - 0953-8194 .- 1365-2826. ; 34:6
  • Journal article (peer-reviewed)abstract
    • Lutetium peptide receptor radio nuclide therapy (Lu-PRRT) is an effective treatment for progressive, metastatic, somatostatin-receptor-positive, well-differentiated neuroendocrine tumours (WD-NETs). Here, we report a single centre experience of real-world efficacy, long-term side effects, and challenges of this treatment. This was a retrospective analysis. All patients linked with our centre who had Lu-PRRT were included. Clinicopathological data were analysed using descriptive statistics, Kaplan-Meier, and Cox regression. A total of 45 patients had Lu-PRRT, of those 30 (67%) were males, and 13 (29%) were more than 65 years old. The primary site was small intestine in 30 (67%) patients, pancreas in seven (16%) patients, and lung in three (7%) patients. The tumor was grade 1 in 15 (35%) patients, grade 2 in 22 (48%) patients, and grade 3 in six (13%) patients. A total of 41 (91%) patients had liver metastasis, and 20 (44%) patients had carcinoid syndrome. Lu-PRRT was the second-line therapy in all patients. Krenning's score was 4 in 36 (80%) patients and 3 in nine (20%) patients. The median waiting time to start Lu-PRRT therapy was 87 days. The median follow-up was 41 months. A total of 23 (51%) patients had a partial response, 18 (40%) patients had stable disease, and four (9%) patients had progression. None of the patients had a complete response. The median progression-free survival (PFS) was 38 months (95% CI: 25.8-50.1). The median overall survival (OS) was not reached. Nine patients died during follow-up (death from any cause). Prior treatment with targeted therapies or high dose somatostatin analogues were negative predictors of Lu-PRRT outcome (p-values of < .001 and < .045, respectively). There were two serious haematological toxicities, one patient developed acute myeloid leukaemia (AML), and the other developed chronic myeloid leukaemia (CML). Lu-PRRT is an effective second-line treatment for metastatic WD-NETs. The effect of targeted therapies on Lu-PRRT outcome was significant and needs to be clarified in further studies.
  •  
9.
  • Kennedy, K. M., et al. (author)
  • Questioning the fetal microbiome illustrates pitfalls of low-biomass microbial studies
  • 2023
  • In: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 613:7945, s. 639-649
  • Journal article (peer-reviewed)abstract
    • Whether the human fetus and the prenatal intrauterine environment (amniotic fluid and placenta) are stably colonized by microbial communities in a healthy pregnancy remains a subject of debate. Here we evaluate recent studies that characterized microbial populations in human fetuses from the perspectives of reproductive biology, microbial ecology, bioinformatics, immunology, clinical microbiology and gnotobiology, and assess possible mechanisms by which the fetus might interact with microorganisms. Our analysis indicates that the detected microbial signals are likely the result of contamination during the clinical procedures to obtain fetal samples or during DNA extraction and DNA sequencing. Furthermore, the existence of live and replicating microbial populations in healthy fetal tissues is not compatible with fundamental concepts of immunology, clinical microbiology and the derivation of germ-free mammals. These conclusions are important to our understanding of human immune development and illustrate common pitfalls in the microbial analyses of many other low-biomass environments. The pursuit of a fetal microbiome serves as a cautionary example of the challenges of sequence-based microbiome studies when biomass is low or absent, and emphasizes the need for a trans-disciplinary approach that goes beyond contamination controls by also incorporating biological, ecological and mechanistic concepts.
  •  
10.
  • Niederle, Bruno, et al. (author)
  • Multiple Endocrine Neoplasia Type 1 and the Pancreas : Diagnosis and Treatment of Functioning and Non-Functioning Pancreatic and Duodenal Neuroendocrine Neoplasia within the MEN1 Syndrome - An International Consensus Statement
  • 2021
  • In: Neuroendocrinology. - : S. Karger. - 0028-3835 .- 1423-0194. ; 111:7, s. 609-630
  • Research review (peer-reviewed)abstract
    • The better understanding of the biological behavior of multiple endocrine neoplasia type 1 (MEN1) organ manifestations and the increase in clinical experience warrant a revision of previously published guidelines. Duodenopancreatic neuroendocrine neoplasias (DP-NENs) are still the second most common manifestation in MEN1 and, besides NENs of the thymus, remain a leading cause of death. DP-NENs are thus of main interest in the effort to reevaluate recommendations for their diagnosis and treatment. Especially over the last 2 years, more clinical experience has documented the follow-up of treated and untreated (natural-course) DP-NENs. It was the aim of the international consortium of experts in endocrinology, genetics, radiology, surgery, gastroenterology, and oncology to systematically review the literature and to present a consensus statement based on the highest levels of evidence. Reviewing the literature published over the past decade, the focus was on the diagnosis of F- and NF-DP-NENs within the MEN1 syndrome in an effort to further standardize and improve treatment and follow-up, as well as to establish a "logbook" for the diagnosis and treatment of DP-NENs. This shall help further reduce complications and improve long-term treatment results in these rare tumors. The following international consensus statement builds upon the previously published guidelines of 2001 and 2012 and attempts to supplement the recommendations issued by various national and international societies.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-10 of 11

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view