SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Ohno S) srt2:(2020-2023)"

Search: WFRF:(Ohno S) > (2020-2023)

  • Result 1-10 of 12
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Campbell, PJ, et al. (author)
  • Pan-cancer analysis of whole genomes
  • 2020
  • In: Nature. - : Springer Science and Business Media LLC. - 1476-4687 .- 0028-0836. ; 578:7793, s. 82-
  • Journal article (peer-reviewed)abstract
    • Cancer is driven by genetic change, and the advent of massively parallel sequencing has enabled systematic documentation of this variation at the whole-genome scale1–3. Here we report the integrative analysis of 2,658 whole-cancer genomes and their matching normal tissues across 38 tumour types from the Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium of the International Cancer Genome Consortium (ICGC) and The Cancer Genome Atlas (TCGA). We describe the generation of the PCAWG resource, facilitated by international data sharing using compute clouds. On average, cancer genomes contained 4–5 driver mutations when combining coding and non-coding genomic elements; however, in around 5% of cases no drivers were identified, suggesting that cancer driver discovery is not yet complete. Chromothripsis, in which many clustered structural variants arise in a single catastrophic event, is frequently an early event in tumour evolution; in acral melanoma, for example, these events precede most somatic point mutations and affect several cancer-associated genes simultaneously. Cancers with abnormal telomere maintenance often originate from tissues with low replicative activity and show several mechanisms of preventing telomere attrition to critical levels. Common and rare germline variants affect patterns of somatic mutation, including point mutations, structural variants and somatic retrotransposition. A collection of papers from the PCAWG Consortium describes non-coding mutations that drive cancer beyond those in the TERT promoter4; identifies new signatures of mutational processes that cause base substitutions, small insertions and deletions and structural variation5,6; analyses timings and patterns of tumour evolution7; describes the diverse transcriptional consequences of somatic mutation on splicing, expression levels, fusion genes and promoter activity8,9; and evaluates a range of more-specialized features of cancer genomes8,10–18.
  •  
2.
  • Bosson, J. K., et al. (author)
  • Psychometric Properties and Correlates of Precarious Manhood Beliefs in 62 Nations
  • 2021
  • In: Journal of Cross-Cultural Psychology. - : SAGE Publications. - 0022-0221 .- 1552-5422. ; 52:3
  • Journal article (peer-reviewed)abstract
    • Precarious manhood beliefs portray manhood, relative to womanhood, as a social status that is hard to earn, easy to lose, and proven via public action. Here, we present cross-cultural data on a brief measure of precarious manhood beliefs (the Precarious Manhood Beliefs scale [PMB]) that covaries meaningfully with other cross-culturally validated gender ideologies and with country-level indices of gender equality and human development. Using data from university samples in 62 countries across 13 world regions (N = 33,417), we demonstrate: (1) the psychometric isomorphism of the PMB (i.e., its comparability in meaning and statistical properties across the individual and country levels); (2) the PMB's distinctness from, and associations with, ambivalent sexism and ambivalence toward men; and (3) associations of the PMB with nation-level gender equality and human development. Findings are discussed in terms of their statistical and theoretical implications for understanding widely-held beliefs about the precariousness of the male gender role.
  •  
3.
  • Yakneen, S, et al. (author)
  • Butler enables rapid cloud-based analysis of thousands of human genomes
  • 2020
  • In: Nature biotechnology. - : Springer Science and Business Media LLC. - 1546-1696 .- 1087-0156. ; 38:3, s. 288-
  • Journal article (peer-reviewed)abstract
    • We present Butler, a computational tool that facilitates large-scale genomic analyses on public and academic clouds. Butler includes innovative anomaly detection and self-healing functions that improve the efficiency of data processing and analysis by 43% compared with current approaches. Butler enabled processing of a 725-terabyte cancer genome dataset from the Pan-Cancer Analysis of Whole Genomes (PCAWG) project in a time-efficient and uniform manner.
  •  
4.
  •  
5.
  • Razis, E., et al. (author)
  • Assessment of the management of carcinomatous meningitis from breast cancer globally: a study by the Breast International Group Brain Metastasis Task Force
  • 2022
  • In: ESMO Open. - : Elsevier BV. - 2059-7029. ; 7:3
  • Journal article (peer-reviewed)abstract
    • Background: Carcinomatous meningitis (CM) is a severe complication of breast cancer. The Breast International Group (BIG) carried out a survey to describe the approach to CM internationally. Patients and methods: A questionnaire on the management of CM was developed by the Brain Metastases Task Force of BIG and distributed to its groups, requesting one answer per group site. Results: A total of 241 sites responded, 119 from Europe, 9 from North America, 39 from Central/South America, 58 from Asia, and 16 in Australia/New Zealand, with 24.5% being general hospitals with oncology units, 44.4% university hospitals, 22.4% oncology centers, and 8.7% private hospitals. About 56.0% of sites reported seeing <5 cases annually with 60.6% reporting no increase in the number of cases of CM recently. Nearly 63.1% of sites investigate for CM when a patient has symptoms or radiological evidence, while 33.2% investigate only for symptoms. For diagnosis, 71.8% of sites required a positive cerebrospinal fluid cytology, while magnetic resonance imaging findings were sufficient in 23.7% of sites. Roughly 97.1% of sites treat CM and 51.9% also refer patients to palliative care. Intrathecal therapy is used in 41.9% of sites, mainly with methotrexate (74.3%). As many as 20 centers have a national registry for patients with breast cancer with central nervous system metastases and of those 5 have one for CM. Most (90.9%) centers would be interested in participating in a registry as well as in studies for CM, the latter preferably (62.1%) breast cancer subtype specific. Conclusions: This is the first study to map out the approach to CM from breast cancer globally. Although guidelines with level 1 evidence are lacking, there is a high degree of homogeneity in the approach to CM globally and great interest for conducting studies in this area.
  •  
6.
  •  
7.
  •  
8.
  • Walsh, Roddy, et al. (author)
  • Enhancing rare variant interpretation in inherited arrhythmias through quantitative analysis of consortium disease cohorts and population controls
  • 2021
  • In: Genetics in Medicine. - : Nature Publishing Group. - 1098-3600 .- 1530-0366. ; 23:1, s. 47-58
  • Journal article (peer-reviewed)abstract
    • Purpose: Stringent variant interpretation guidelines can lead to high rates of variants of uncertain significance (VUS) for genetically heterogeneous disease like long QT syndrome (LQTS) and Brugada syndrome (BrS). Quantitative and disease-specific customization of American College of Medical Genetics and Genomics/Association for Molecular Pathology (ACMG/AMP) guidelines can address this false negative rate.Methods: We compared rare variant frequencies from 1847 LQTS (KCNQ1/KCNH2/SCN5A) and 3335 BrS (SCN5A) cases from the International LQTS/BrS Genetics Consortia to population-specific gnomAD data and developed disease-specific criteria for ACMG/AMP evidence classes-rarity (PM2/BS1 rules) and case enrichment of individual (PS4) and domain-specific (PM1) variants.Results: Rare SCN5A variant prevalence differed between European (20.8%) and Japanese (8.9%) BrS patients (p = 5.7 x 10(-18)) and diagnosis with spontaneous (28.7%) versus induced (15.8%) Brugada type 1 electrocardiogram (ECG) (p = 1.3 x 10(-13)). Ion channel transmembrane regions and specific N-terminus (KCNH2) and C-terminus (KCNQ1/KCNH2) domains were characterized by high enrichment of case variants and >95% probability of pathogenicity. Applying the customized rules, 17.4% of European BrS and 74.8% of European LQTS cases had (likely) pathogenic variants, compared with estimated diagnostic yields (case excess over gnomAD) of 19.2%/82.1%, reducing VUS prevalence to close to background rare variant frequency.Conclusion: Large case-control data sets enable quantitative implementation of ACMG/AMP guidelines and increased sensitivity for inherited arrhythmia genetic testing.
  •  
9.
  • Fulara, Himanshu, et al. (author)
  • Giant voltage-controlled modulation of spin Hall nano-oscillator damping
  • 2020
  • In: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 11:1
  • Journal article (peer-reviewed)abstract
    • Spin Hall nano-oscillators (SHNOs) are emerging spintronic devices for microwave signal generation and oscillator-based neuromorphic computing combining nano-scale footprint, fast and ultra-wide microwave frequency tunability, CMOS compatibility, and strong non-linear properties providing robust large-scale mutual synchronization in chains and two-dimensional arrays. While SHNOs can be tuned via magnetic fields and the drive current, neither approach is conducive to individual SHNO control in large arrays. Here, we demonstrate electrically gated W/CoFeB/MgO nano-constrictions in which the voltage-dependent perpendicular magnetic anisotropy tunes the frequency and, thanks to nano-constriction geometry, drastically modifies the spin-wave localization in the constriction region resulting in a giant 42% variation of the effective damping over four volts. As a consequence, the SHNO threshold current can be strongly tuned. Our demonstration adds key functionality to nano-constriction SHNOs and paves the way for energy-efficient control of individual oscillators in SHNO chains and arrays for neuromorphic computing. Spin Hall nano-oscillators can be tuned via magnetic fields and the drive current, but individual oscillator control in large arrays remains a challenge. Here, the authors provide individual control of the threshold current and the auto-oscillation frequency by voltage-controlled magnetic anisotropy.
  •  
10.
  • Zahedinejad, Mohammad, 1986, et al. (author)
  • Memristive control of mutual spin Hall nano-oscillator synchronization for neuromorphic computing
  • 2022
  • In: Nature Materials. - : Springer Nature. - 1476-1122 .- 1476-4660. ; 21:1, s. 81-87
  • Journal article (peer-reviewed)abstract
    • Synchronization of large spin Hall nano-oscillator (SHNO) arrays is an appealing approach toward ultrafast non-conventional computing. However, interfacing to the array, tuning its individual oscillators and providing built-in memory units remain substantial challenges. Here, we address these challenges using memristive gating of W/CoFeB/MgO/AlOx-based SHNOs. In its high resistance state, the memristor modulates the perpendicular magnetic anisotropy at the CoFeB/MgO interface by the applied electric field. In its low resistance state the memristor adds or subtracts current to the SHNO drive. Both electric field and current control affect the SHNO auto-oscillation mode and frequency, allowing us to reversibly turn on/off mutual synchronization in chains of four SHNOs. We also demonstrate that two individually controlled memristors can be used to tune a four-SHNO chain into differently synchronized states. Memristor gating is therefore an efficient approach to input, tune and store the state of SHNO arrays for non-conventional computing models.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-10 of 12

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view