SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Orton G. S.) srt2:(2010-2014)"

Search: WFRF:(Orton G. S.) > (2010-2014)

  • Result 1-2 of 2
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Mousis, O., et al. (author)
  • Scientific rationale for Saturn's in situ exploration
  • 2014
  • In: Planetary and Space Science. - : Elsevier BV. - 0032-0633 .- 1873-5088. ; 104, s. 29-47
  • Journal article (peer-reviewed)abstract
    • Remote sensing observations meet some limitations when used to study the bulk atmospheric composition of the giant planets of our solar system. A remarkable example of the superiority of in situ probe measurements is illustrated by the exploration of Jupiter, where key measurements such as the determination of the noble gases' abundances and the precise measurement of the helium mixing ratio have only been made available through in situ measurements by the Galileo probe. This paper describes the main scientific goals to be addressed by the future in situ exploration of Saturn placing the Galileo probe exploration of Jupiter in a broader context and before the future probe exploration of the more remote ice giants. In situ exploration of Saturn's atmosphere addresses two broad themes that are discussed throughout this paper: first, the formation history of our solar system and second, the processes at play in planetary atmospheres. In this context, we detail the reasons why measurements of Saturn's bulk elemental and isotopic composition would place important constraints on the volatile reservoirs in the protosolar nebula. We also show that the in situ measurement of CO (or any other disequilibrium species that is depleted by reaction with water) in Saturn's upper troposphere may help constraining its bulk O/H ratio. We compare predictions of Jupiter and Saturn's bulk compositions from different formation scenarios, and highlight the key measurements required to distinguish competing theories to shed light on giant planet formation as a common process in planetary systems with potential applications to most extrasolar systems. In situ measurements of Saturn's stratospheric and tropospheric dynamics, chemistry and cloud-forming processes will provide access to phenomena unreachable to remote sensing studies. Different mission architectures are envisaged, which would benefit from strong international collaborations, all based on an entry probe that would descend through Saturn's stratosphere and troposphere under parachute down to a minimum of 10 bar of atmospheric pressure. We finally discuss the science payload required on a Saturn probe to match the measurement requirements.
  •  
2.
  • Richard, C., et al. (author)
  • New section of the HITRAN database: Collision-induced absorption (CIA)
  • 2012
  • In: Journal of Quantitative Spectroscopy & Radiative Transfer. - : Elsevier BV. - 0022-4073 .- 1879-1352. ; 113:11, s. 1276-1285
  • Journal article (peer-reviewed)abstract
    • This paper describes the addition of Collision-Induced Absorption (CIA) into the HITRAN compilation. The data from different experimental and theoretical sources have been cast into a consistent format and formalism. The implementation of these new spectral data into the HITRAN database is invaluable for modeling and interpreting spectra of telluric and other planetary atmospheres as well as stellar atmospheres. In this implementation for HITRAN, CIAs of N-2, H-2, O-2, CO2, and CH4 due to various collisionally interacting atoms or molecules are presented. Some CIA spectra are given over an extended range of frequencies, including several H-2 overtone bands that are dipole-forbidden in the non-interacting molecules. Temperatures from tens to thousands of Kelvin are considered, as required, for example, in astrophysical analyses of objects, including cool white dwarfs, brown dwarfs. M dwarfs, cool main sequence stars, solar and extra-solar planets, and the formation of so-called first stars. (C) 2011 Elsevier Ltd. All rights reserved.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-2 of 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view