SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Pan Qin) srt2:(2020-2024)"

Search: WFRF:(Pan Qin) > (2020-2024)

  • Result 1-10 of 21
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Beal, Jacob, et al. (author)
  • Robust estimation of bacterial cell count from optical density
  • 2020
  • In: Communications Biology. - : Springer Science and Business Media LLC. - 2399-3642. ; 3:1
  • Journal article (peer-reviewed)abstract
    • Optical density (OD) is widely used to estimate the density of cells in liquid culture, but cannot be compared between instruments without a standardized calibration protocol and is challenging to relate to actual cell count. We address this with an interlaboratory study comparing three simple, low-cost, and highly accessible OD calibration protocols across 244 laboratories, applied to eight strains of constitutive GFP-expressing E. coli. Based on our results, we recommend calibrating OD to estimated cell count using serial dilution of silica microspheres, which produces highly precise calibration (95.5% of residuals <1.2-fold), is easily assessed for quality control, also assesses instrument effective linear range, and can be combined with fluorescence calibration to obtain units of Molecules of Equivalent Fluorescein (MEFL) per cell, allowing direct comparison and data fusion with flow cytometry measurements: in our study, fluorescence per cell measurements showed only a 1.07-fold mean difference between plate reader and flow cytometry data.
  •  
2.
  • Fenstermacher, M.E., et al. (author)
  • DIII-D research advancing the physics basis for optimizing the tokamak approach to fusion energy
  • 2022
  • In: Nuclear Fusion. - : IOP Publishing. - 0029-5515 .- 1741-4326. ; 62:4
  • Journal article (peer-reviewed)abstract
    • DIII-D physics research addresses critical challenges for the operation of ITER and the next generation of fusion energy devices. This is done through a focus on innovations to provide solutions for high performance long pulse operation, coupled with fundamental plasma physics understanding and model validation, to drive scenario development by integrating high performance core and boundary plasmas. Substantial increases in off-axis current drive efficiency from an innovative top launch system for EC power, and in pressure broadening for Alfven eigenmode control from a co-/counter-I p steerable off-axis neutral beam, all improve the prospects for optimization of future long pulse/steady state high performance tokamak operation. Fundamental studies into the modes that drive the evolution of the pedestal pressure profile and electron vs ion heat flux validate predictive models of pedestal recovery after ELMs. Understanding the physics mechanisms of ELM control and density pumpout by 3D magnetic perturbation fields leads to confident predictions for ITER and future devices. Validated modeling of high-Z shattered pellet injection for disruption mitigation, runaway electron dissipation, and techniques for disruption prediction and avoidance including machine learning, give confidence in handling disruptivity for future devices. For the non-nuclear phase of ITER, two actuators are identified to lower the L-H threshold power in hydrogen plasmas. With this physics understanding and suite of capabilities, a high poloidal beta optimized-core scenario with an internal transport barrier that projects nearly to Q = 10 in ITER at ∼8 MA was coupled to a detached divertor, and a near super H-mode optimized-pedestal scenario with co-I p beam injection was coupled to a radiative divertor. The hybrid core scenario was achieved directly, without the need for anomalous current diffusion, using off-axis current drive actuators. Also, a controller to assess proximity to stability limits and regulate β N in the ITER baseline scenario, based on plasma response to probing 3D fields, was demonstrated. Finally, innovative tokamak operation using a negative triangularity shape showed many attractive features for future pilot plant operation.
  •  
3.
  • Xu, Xiao-Ye, et al. (author)
  • Experimental extraction of nonlocal weak values for demonstrating the failure of a product rule
  • 2020
  • In: Optics Letters. - 0146-9592 .- 1539-4794. ; 45:7, s. 1715-1718
  • Journal article (peer-reviewed)abstract
    • We experimentally demonstrate an alternative method for measuring nonlocal weak values in linear optics, avoiding the use of second-order interaction. The method is based on the concept of modular values. The paths of two photons, initialized in hyperentangled states, are adopted as the meter with the polarization acting as the system. The modular values are read out through the reconstructed final states of the meter. The weak value of nonlocal observables is given through its connection to the modular value. Comparing the weak values of local and nonlocal observables, we demonstrate the failure of product rules for an entangled system. Our results significantly simplify the task of measuring nonloral weak values and will play an important role in the application of weak measurement.
  •  
4.
  • Zhu, Zhenshuo, et al. (author)
  • Histone demethylase complexes KDM3A and KDM3B cooperate with OCT4/SOX2 to define a pluripotency gene regulatory network
  • 2021
  • In: The FASEB Journal. - : John Wiley & Sons. - 0892-6638 .- 1530-6860. ; 35:6
  • Journal article (peer-reviewed)abstract
    • The pluripotency gene regulatory network of porcine induced pluripotent stem cells(piPSCs), especially in epigenetics, remains elusive. To determine the biological function of epigenetics, we cultured piPSCs in different culture conditions. We found that activation of pluripotent gene- and pluripotency-related pathways requires the erasure of H3K9 methylation modification which was further influenced by mouse embryonic fibroblast (MEF) served feeder. By dissecting the dynamic change of H3K9 methylation during loss of pluripotency, we demonstrated that the H3K9 demethylases KDM3A and KDM3B regulated global H3K9me2/me3 level and that their co-depletion led to the collapse of the pluripotency gene regulatory network. Immunoprecipitation-mass spectrometry (IP-MS) provided evidence that KDM3A and KDM3B formed a complex to perform H3K9 demethylation. The genome-wide regulation analysis revealed that OCT4 (O) and SOX2 (S), the core pluripotency transcriptional activators, maintained the pluripotent state of piPSCs depending on the H3K9 hypomethylation. Further investigation revealed that O/S cooperating with histone demethylase complex containing KDM3A and KDM3B promoted pluripotency genes expression to maintain the pluripotent state of piPSCs. Together, these data offer a unique insight into the epigenetic pluripotency network of piPSCs.
  •  
5.
  • Han, L., et al. (author)
  • Cell transcriptomic atlas of the non-human primate Macaca fascicularis
  • 2022
  • In: Nature. - : Springer Nature. - 0028-0836 .- 1476-4687. ; 604:7907, s. 723-731
  • Journal article (peer-reviewed)abstract
    • Studying tissue composition and function in non-human primates (NHPs) is crucial to understand the nature of our own species. Here we present a large-scale cell transcriptomic atlas that encompasses over 1 million cells from 45 tissues of the adult NHP Macaca fascicularis. This dataset provides a vast annotated resource to study a species phylogenetically close to humans. To demonstrate the utility of the atlas, we have reconstructed the cell–cell interaction networks that drive Wnt signalling across the body, mapped the distribution of receptors and co-receptors for viruses causing human infectious diseases, and intersected our data with human genetic disease orthologues to establish potential clinical associations. Our M. fascicularis cell atlas constitutes an essential reference for future studies in humans and NHPs. 
  •  
6.
  • Hansen, Karin, et al. (author)
  • Radiographically confirmed community-acquired pneumonia in hospitalized adults due to pneumococcal vaccine serotypes in Sweden, 2016–2018—The ECAPS study
  • 2023
  • In: Frontiers in Public Health. - : Frontiers Media SA. - 2296-2565. ; 11
  • Journal article (peer-reviewed)abstract
    • Objectives: In Sweden, pneumococcal serotype distribution in adults with community-acquired pneumonia (CAP) and potential coverage of currently licensed pneumococcal conjugate vaccines (PCVs) is unknown. Methods: During 2016–2018, patients aged ≥18 years hospitalized with radiologically confirmed (RAD+) CAP were enrolled at Skåne University Hospital in a study on the etiology of CAP in Sweden (ECAPS). Urine samples and blood cultures were collected per-protocol. Streptococcus pneumoniae (Spn) culture isolates were serotyped and urine samples tested for the pan-pneumococcal urinary antigen (PUAT) and multiplex urine antigen detection (UAD) assay, detecting 24 serotypes. Results: Analyses included 518 participants with RAD+CAP; 67.4% were ≥65 years of age, 73.4% were either immunocompromised or had an underlying chronic medical condition. The proportion of CAP due to Spn identified by any method was 24.3% of which 9.3% was detected by UAD alone. The most frequently identified serotypes were 3 (26 cases, 5.0% of all CAP), and 8, 11A and 19A (10 cases each, 1.9%). In individuals aged 18–64 and ≥65 years, respectively, PCV20 serotypes contributed to 35 of 169 (20.7%) and 53 of 349 cases of all CAP (15.2%), and PCV13 serotypes caused 21 of 169 (12.4%) and 35 of 349 (10.0%) cases. PCV15 coverage was 23 of 169 (13.6%) and 42 of 349 (12.0%) in individuals aged 18–64 and ≥65 years, respectively. Overall, PCV20 increases the coverage of all CAP from 10.8% (PCV13) to 17.0%. Conclusion: Compared to earlier pneumococcal vaccines, PCV20 expands the coverage of all-cause CAP. Routine diagnostic tests underestimate the proportion of CAP caused by Spn.
  •  
7.
  •  
8.
  • Marcotte, Harold, et al. (author)
  • Conversion of monoclonal IgG to dimeric and secretory IgA restores neutralizing ability and prevents Infection of Omicron lineages
  • 2024
  • In: Proceedings of the National Academy of Sciences of the United States of America. - : NATL ACAD SCIENCES. - 0027-8424 .- 1091-6490. ; 121:3
  • Journal article (peer-reviewed)abstract
    • The emergence of Omicron lineages and descendent subvariants continues to present a severe threat to the effectiveness of vaccines and therapeutic antibodies. We have previ- ously suggested that an insufficient mucosal immunoglobulin A (IgA) response induced by the mRNA vaccines is associated with a surge in breakthrough infections. Here, we further show that the intramuscular mRNA and/or inactivated vaccines cannot suffi- ciently boost the mucosal secretory IgA response in uninfected individuals, particu- larly against the Omicron variant. We thus engineered and characterized recombinant monomeric, dimeric, and secretory IgAl antibodies derived from four neutralizing IgG monoclonal antibodies (mAbs 01A05, rmAb23, DXP-604, and XG014) targeting the receptor-binding domain of the spike protein. Compared to their parental IgG antibod- ies, dimeric and secretory IgAl antibodies showed a higher neutralizing activity against different variants of concern (VOCs), in part due to an increased avidity. Importantly, the dimeric or secretory IgAl form of the DXP-604 antibody significantly outperformed its parental IgG antibody, and neutralized the Omicron lineages BA.1, BA.2, and BA.4/5 with a 25- to 75-fold increase in potency. In human angiotensin converting enzyme 2 (ACE2) transgenic mice, a single intranasal dose of the dimeric IgA DXP-604 conferred prophylactic and therapeutic protection against Omicron BA.5. Thus, dimeric or secre- tory IgA delivered by nasal administration may potentially be exploited for the treatment Iand prevention of Omicron infection, thereby providing an alternative tool for combating immune evasion by the current circulating subvariants and, potentially, future VOCs.
  •  
9.
  •  
10.
  • Pan, Lang, et al. (author)
  • 8-Oxoguanine targeted by 8-oxoguanine DNA glycosylase 1 (OGG1) is central to fibrogenic gene activation upon lung injury
  • 2023
  • In: Nucleic Acids Research. - : Oxford University Press (OUP). - 0305-1048 .- 1362-4962. ; 51:3, s. 1087-1102
  • Journal article (peer-reviewed)abstract
    • Reactive oxygen species (ROS) are implicated in epithelial cell-state transition and deposition of extracellular matrix upon airway injury. Of the many cellular targets of ROS, oxidative DNA modification is a major driving signal. However, the role of oxidative DNA damage in modulation profibrotic processes has not been fully delineated. Herein, we report that oxidative DNA base lesions, 8-oxoG, complexed with 8-oxoguanine DNA glycosylase 1 (OGG1) functions as a pioneer factor, contributing to transcriptional reprogramming within airway epithelial cells. We show that TGFβ1-induced ROS increased 8-oxoG levels in open chromatin, dynamically reconfigure the chromatin state. OGG1 complexed with 8-oxoG recruits transcription factors, including phosphorylated SMAD3, to pro-fibrotic gene promoters thereby facilitating gene activation. Moreover, 8-oxoG levels are elevated in lungs of mice subjected to TGFβ1-induced injury. Pharmacologic targeting of OGG1 with the selective small molecule inhibitor of 8-oxoG binding, TH5487, abrogates fibrotic gene expression and remodeling in this model. Collectively, our study implicates that 8-oxoG substrate-specific binding by OGG1 is a central modulator of transcriptional regulation in response to tissue repair.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-10 of 21

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view