SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Parfitt M) srt2:(2020-2021)"

Search: WFRF:(Parfitt M) > (2020-2021)

  • Result 1-3 of 3
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Vogel, Jacob W., et al. (author)
  • Four distinct trajectories of tau deposition identified in Alzheimer’s disease
  • 2021
  • In: Nature Medicine. - : Springer Science and Business Media LLC. - 1078-8956 .- 1546-170X. ; 27:5, s. 871-881
  • Journal article (peer-reviewed)abstract
    • Alzheimer’s disease (AD) is characterized by the spread of tau pathology throughout the cerebral cortex. This spreading pattern was thought to be fairly consistent across individuals, although recent work has demonstrated substantial variability in the population with AD. Using tau-positron emission tomography scans from 1,612 individuals, we identified 4 distinct spatiotemporal trajectories of tau pathology, ranging in prevalence from 18 to 33%. We replicated previously described limbic-predominant and medial temporal lobe-sparing patterns, while also discovering posterior and lateral temporal patterns resembling atypical clinical variants of AD. These ‘subtypes’ were stable during longitudinal follow-up and were replicated in a separate sample using a different radiotracer. The subtypes presented with distinct demographic and cognitive profiles and differing longitudinal outcomes. Additionally, network diffusion models implied that pathology originates and spreads through distinct corticolimbic networks in the different subtypes. Together, our results suggest that variation in tau pathology is common and systematic, perhaps warranting a re-examination of the notion of ‘typical AD’ and a revisiting of tau pathological staging. © 2021, The Author(s), under exclusive licence to Springer Nature America, Inc.
  •  
2.
  • Clayson, C. A., et al. (author)
  • Super sites for advancing understanding of the oceanic and atmospheric boundary layers
  • 2021
  • In: Marine Technology Society Journal. - 0025-3324. ; 55:3, s. 144-145
  • Journal article (peer-reviewed)abstract
    • Air–sea interactions are critical to large-scale weather and climate predictions because of the ocean’s ability to absorb excess atmospheric heat and carbon and regulate exchanges of momentum, water vapor, and other greenhouse gases. These exchanges are controlled by molecular, turbulent, and wave-driven processes in the atmospheric and oceanic boundary layers. Improved understanding and representation of these processes in models are key for increasing Earth system prediction skill, particularly for subseasonal to decadal time scales. Our understanding and ability to model these processes within this coupled system is presently inadequate due in large part to a lack of data: contemporaneous long-term observations from the top of the marine atmospheric boundary layer (MABL) to the base of the oceanic mixing layer. We propose the concept of “Super Sites” to provide multi-year suites of measurements at specific locations to simultaneously characterize physical and biogeochemical processes within the coupled boundary layers at high spatial and temporal resolution. Measurements will be made from floating platforms, buoys, towers, and autonomous vehicles, utilizing both in-situ and remote sensors. The engineering challenges and level of coordination, integration, and interoperability required to develop these coupled ocean–atmosphere Super Sites place them in an “Ocean Shot” class. © 2021, Marine Technology Society Inc.. All rights reserved.
  •  
3.
  • Nitare, Johan, et al. (author)
  • Four new species of Hydnellum (Thelephorales, Basidiomycota) with a note on Sarcodon illudens
  • 2021
  • In: Fungal Systematics and Evolution. - : Westerdijk Fungal Biodiversity Institute. - 2589-3823 .- 2589-3831. ; 7, s. 233-254
  • Journal article (peer-reviewed)abstract
    • Four new Hydnellum species are described. Hydnellum roseoviolaceum sp. nov. grows in dry pine heaths on acidic, sandy soil. It is close to H. fuligineoviolaceum, another pine-associated species, but differs by smaller spores, an initially rose-coloured instead of violet flesh in fresh basidiomata and a mild taste. Hydnellum scabrosellum sp. nov. grows in coniferous forests on calcareous soil. It shares a general morphology with H. scabrosum, which also is its closest relative. It differs by having smaller and slenderer basidiomata and by the yellowish ochraceous colour of flesh and spines in dried specimens compared to the whitish or reddish brown colour seen in H. scabrosum. Hydnellum fagiscabrosum sp. nov. is another species with morphological and phylogenetic affinities to H. scabrosum. However, it is associated with trees from Fagales whereas H. scabrosum is associated with Pinaceae. Hydnellum nemorosum sp. nov. is yet another species that associates with broadleaved trees. It seems to be a rare species, morphologically reminiscent of H. fuligineoviolaceum, H. ioeides and H. scabrosum, but it is phylogenetically close to H. fennicum. Sequences from the type specimens of H. glaucopus, H. lepidum, H. scabrosum, Sarcodon illudens and S. regalis are included in the analyses. Specimens given the provisional name “Sarcodon pseudoglaucopus” in Sweden are now shown to be referable to S. illudens. The analyses further showed that S. illudens is close to H. lepidum. The new combination Hydnellum illudens is proposed. Sarcodon regalis and H. lepidum are shown to be conspecific and, although their basionyms were simultaneously published, the name S. regalis was only validated in a later publication. Hydnellum lepidum therefore takes priority and S. regalis becomes a synonym.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-3 of 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view